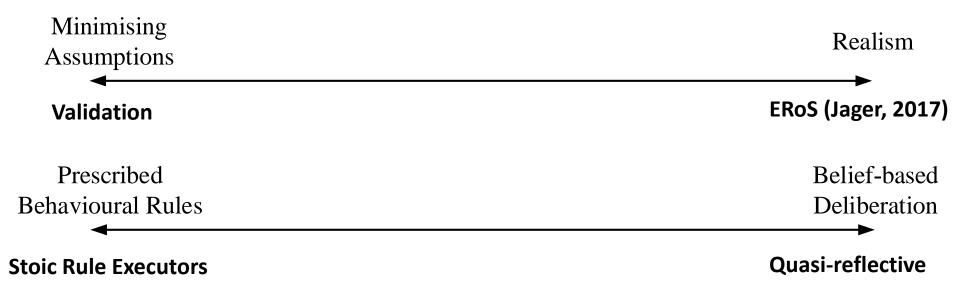

Unleashing the Agents: From a Descriptive to an Explanatory Perspective in Agent-based Modelling

Christopher K. Frantz <u>christopher.frantz@ntnu.no</u>

Social Simulation Conference 2018 20th-24th August 2018 Stockholm

The things we do ...


- Agent-based Modelling
 - Complexity
 - Human Metaphor

Images:

http://sethsays.org/index.php/2016/08/26/cooperation-beats-competition-pun-intended-seth-explains-why-part-3/2 https://aspergerhuman.wordpress.com/2017/01/14/social-conflict-makes-me-ill/

... when we model ...

- Realistic representation of scenario important
- But what about the *agents*?

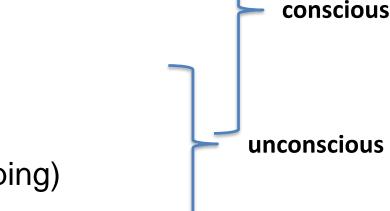
Question

- Can we endow our «pseudo humans» with (at least) «pseudo-reflective» ability?
- Motto: «Don't tell me what you are doing; tell my why you are doing it.»
- \rightarrow 1. Development Process
- \rightarrow 2. Evaluation

Development Process

- Verification
 - Step-by-step verification
- Standard Debugging/Inspection Tools?
 - State inspections (e.g. variables)
 - Suggestion: mental reconstruction of narrative from states
- While states are helpful, narratives are preferrable.
 - Letting the agents explain what (they think) is happening

Evaluation


- Temptation to focus on aggregate metrics
- Closing the micro-macro link of analysis
- Uniform and accessible exploration across all levels of social organisation

Challenges

- Minimal set of human abilities necessary?
- Representation?

Fundamental (Human) Abilities?

- Deliberation (reasoning)
- Abstraction (complex language, social constructions)
- Empathy (perspective taking)
- Social learning, referencing
- Experiential learning
- Implicit social cognition (stereotyping)

Suggestion: (Social) *Institutions* as lowest common denominator of any society

Fundamental (Human) Abilities?

Deliberation (reasoning)
 Abstraction (complex language, social constructions)
 Empathy (perspective taking)
 Social learning, referencing
 Experiential learning
 Implicit social cognition (stereotyping)

Suggestion: (Social) *Institutions* as lowest common denominator of any society

Institutions ('Manifestations of Social Behaviour')

Conventions (Descriptive Norms)

- Describe observable behaviour
- «Drivers drive on the right side of the road.»

Social Norms (Injunctive Norms)

- Describe obligations, permissions, prohibitions
- Socially enforced
- «Drivers must stop at zebra crossing if encountering pedestrians.»
- Rules (Laws)
 - Formalised, centrally enforced
 - Traffic law: «Drivers must stop at zebra crossing, or else they face fines.»

Institutional Grammar: Nested ADICO

Frantz et al., 2013/2015; Extension of original 'Grammar of Institutions' by Crawford and Ostrom, 1995

Symbols	Α	D	I	С	0
Semantics	Attributes	Deontic	Aim	Conditions	Or else
Pragmatic use	Actor	Duty	Action	Context	Sanction
				f	

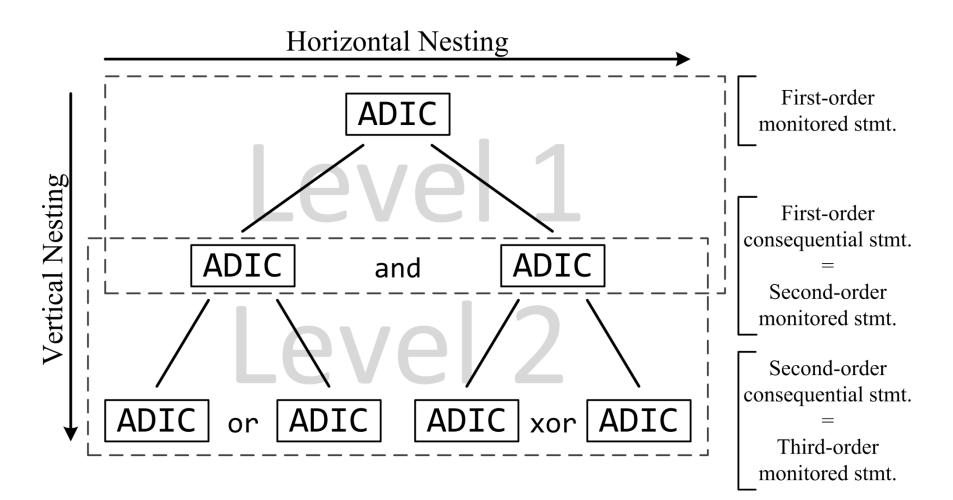
• Institution Types:

Spatial, temporal, procedural

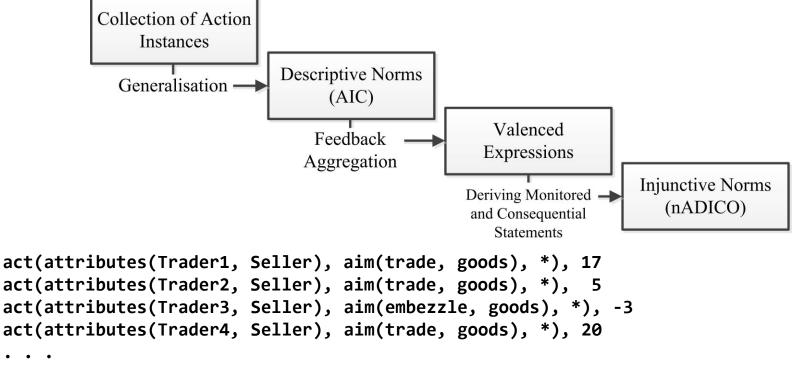
• AIC (Conventions)

- Drivers (A) drive on the same side (I) of the road (C).

- ADICO (Norms/Rules)
 - Drivers (A) must (D) drive on the same side (I) of the road (C),
 or else drivers (A) may (D) cause accidents (I).*

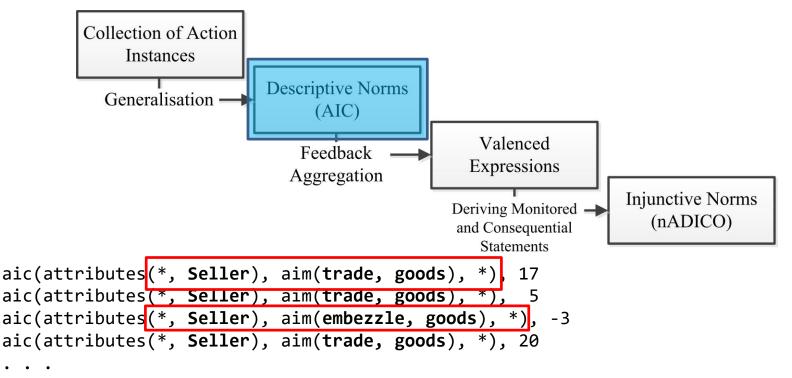

→ Structure: ADIC(ADIC)

Consequential statement

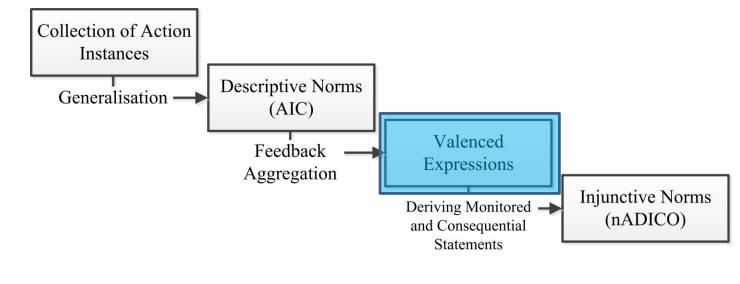

Monitored statement

* If unspecified, (C) resolves to 'at all places, at all times'.

Nesting Principles

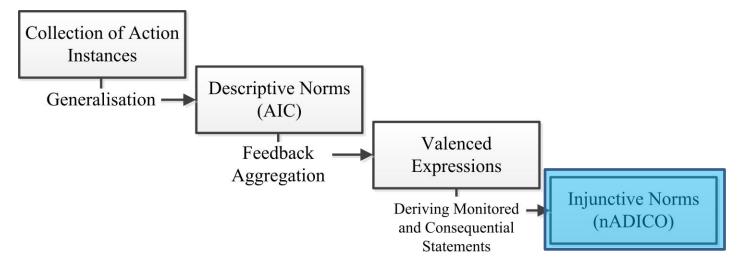


- Agents observe their social environment and collect observations (& feedback), and generalise those.
- Inference of *desirable actions* based on feedback

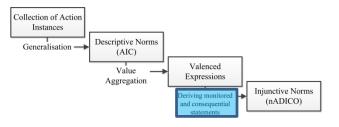

→ Details: Frantz et al. (2015): <u>Modelling Dynamic Normative Understanding in Agent Societies</u>. Scalable Computing: Practice and Experience, vol. 16, no. 4, pp. 355-378

- Agents observe their social environment and collect observations (& feedback), and generalise those.
- Inference of *desirable actions* based on feedback

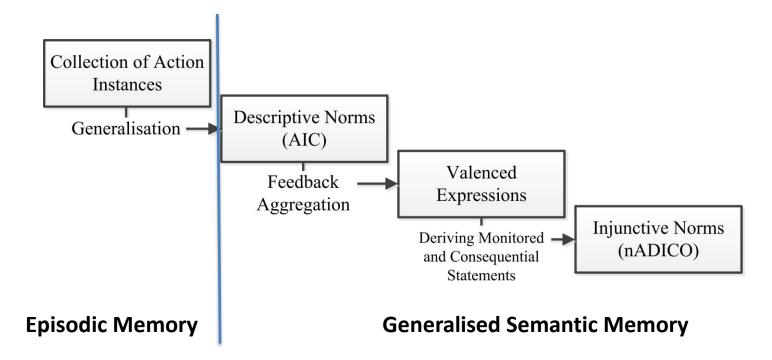
→ Details: Frantz et al. (2015): <u>Modelling Dynamic Normative Understanding in Agent Societies</u>. Scalable Computing: Practice and Experience, vol. 16, no. 4, pp. 355-378


- Agents observe their social environment and collect observations (& feedback), and generalise those.
- Inference of *desirable actions* based on feedback


```
aic(attributes(*, Seller), aim(trade, goods), *), 14
aic(attributes(*, Seller), aim(embezzle, goods), *), -3
```

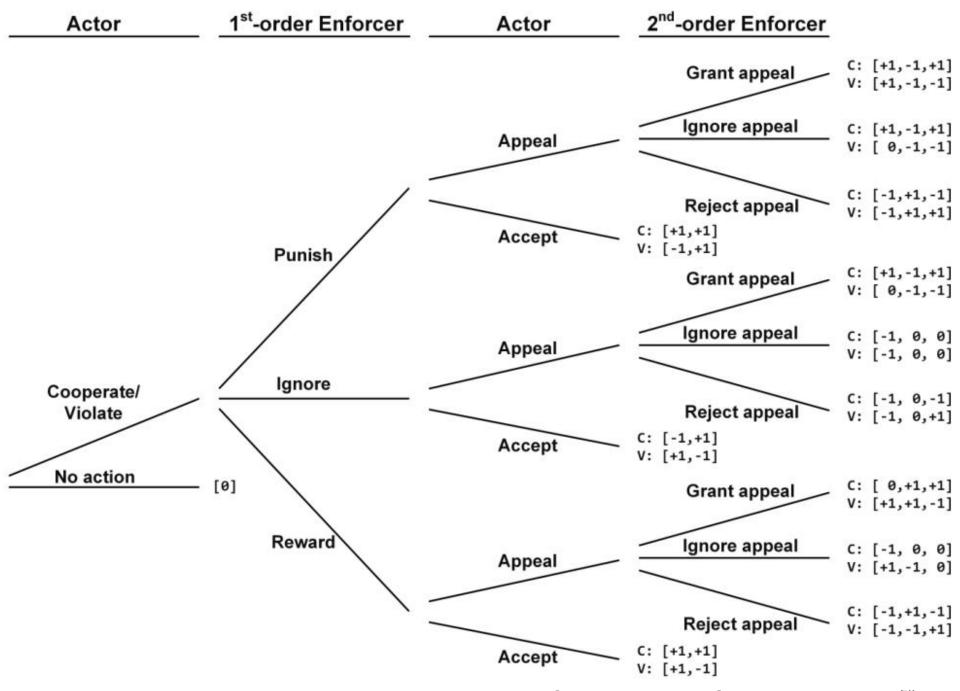

→ Details: Frantz et al. (2015): <u>Modelling Dynamic Normative Understanding in Agent Societies</u>. Scalable Computing: Practice and Experience, vol. 16, no. 4, pp. 355-378 ¹⁵

- Agents observe their social environment and collect observations (& feedback), and generalise those.
- Inference of *desirable actions* based on feedback



→ Details: Frantz et al. (2015): <u>Modelling Dynamic Normative Understanding in Agent Societies</u>. Scalable Computing: Practice and Experience, vol. 16, no. 4, pp. 355-378

Generating Injunctive Norms


- Action 1 (previous action)
- \rightarrow Mapping to ADIC(ADIC or ADIC) :
- nadico(adic(attributes(*, Producer), should (11), aim(send, goods), *),
 - orElse(
 - adic(attributes(*, Seller), will not, aim(trade, goods), *)
 or
 - adic(attributes(*, Seller), will not, aim(embezzle, goods),
 *))
- → Details: Frantz et al. (2015): <u>Modelling Dynamic Normative Understanding in Agent Sociețies</u>. Scalable Computing: Practice and Experience, vol. 16, no. 4, pp. 355-378

- Performed in real time
- For each agent

Experiment

- Corruption Game Cooperation game of moderate complexity; variation of double-sided metanorms game
- Stylised interaction between citizens and enforcement personnel (monitoring and punishing transgressions)
- Third party monitoring and appeals process
 - Enforcers monitor citizens, and are monitored themselves
 - Representation of Structural Institutional Regress

Feedback Syntax: [*citizen*[,1stOfficial[,2ndOfficial]]]; $C \rightarrow Cooperate; V \rightarrow Violate$

Parameters

Parameter	Value Range and Step Size	
Number of Citizens	25 - 75; step size: 25	
Number of Officials	25 - 75; step size: 25	
Exploration Probability	0.1	
Cheater Fraction	0.3 - 0.7; step size: 0.2	
Cheating Probability	0.5 (fixed)	
Weight for Observations	0.5 (fixed)	
Memory Length	100 (fixed)	

Correlation between parameters and cooperation decisions

Parameter	COOPERATE	VIOLATE	INACTIVE
Number of Citizens	0.22	0.25	0.51
Number of Officials	0.36	0.55	0
Quota of Cheating Citizens	-0.3	0.45	0
Social Learning	-0.03	0.03	-0.25
Social Learning Separated by Role	0.32	-0.22	-0.35
Ignoring Actions	-0.38	0.36	0.51
Appealing	0.33	-0.14	-0.33

Drilling down: Correlation between statement inference and role-separated social learning

Index	Statement	Correlation
¹ +	OFFICIAL: REJECT_APPEAL – CITIZEN: APPEAL – OFFICIAL: SANCTION – CITIZEN: VIOLATE	0.38
² O	CITIZEN: ACCEPT – OFFICIAL: IGNORE – CITIZEN: APPEAL – OF- FICIAL: SANCTION – CITIZEN: VIOLATE	0.25
3	OFFICIAL: GRANT_APPEAL – CITIZEN: APPEAL – OFFICIAL: SANCTION – CITIZEN: VIOLATE	0.25
4 +	CITIZEN: ACCEPT – OFFICIAL: REWARD – CITIZEN: COOPERATE	0.38
5	CITIZEN: ACCEPT – OFFICIAL: IGNORE – CITIZEN: APPEAL – OF- FICIAL: IGNORE – CITIZEN: COOPERATE	0.26
6	OFFICIAL: REJECT_APPEAL – CITIZEN: APPEAL – OFFICIAL: IG- NORE – CITIZEN: COOPERATE	0.26
7 +	OFFICIAL: GRANT_APPEAL – CITIZEN: APPEAL – OFFICIAL: IG- NORE – CITIZEN: APPEAL – OFFICIAL: SANCTION – CITIZEN: COOPERATE	
8	OFFICIAL: REJECT_APPEAL – CITIZEN: APPEAL – OFFICIAL: SANCTION – CITIZEN: COOPERATE	0.26
⁹ +	OFFICIAL: GRANT_APPEAL – CITIZEN: APPEAL – OFFICIAL: SANCTION – CITIZEN: COOPERATE	0.23
10	CITIZEN: IGNORE	-0.35

Micro-level Statements

A=A(*, {ROLE=[CITIZEN]}), D=3.0, I=I(APPEAL, *), C=C({PREVIOUS_ACTION=L0: A=A(*, {ROLE=[OFFICIAL]}), I=I(SANCTION, *), C=C({PREVIOUS_ACTION=L0: A=A(*, {ROLE=[CITIZEN]}), I=I(VIOLATE, *), C=C(*), O=(null)}), O=(null)}), O=(L1: A=A(*, {ROLE=[OFFICIAL]}), D=-3.0 (inv), I=I(GRANT_APPEAL, *), C=C(*), O=(null))

A=A(*, {ROLE=[CITIZEN]}), D=-1.0, I=I(APPEAL, *), C=C({PREVIOUS_ACTION=L0: A=A(*, {ROLE=[OFFICIAL]}), I=I(SANCTION, *), C=C({PREVIOUS_ACTION=L0: A=A(*, {ROLE=[CITIZEN]}), I=I(VIOLATE, *), C=C(*), O=(null)}), O=(null)}), O=(L1: A=A(*, {ROLE=[OFFICIAL]}), D=1.0 (inv), I=I(REJECT_APPEAL, *), C=C(*), O=(null))

A=A(*, {ROLE=[CITIZEN]}), D=-0.5, I=I(APPEAL, *), C=C({PREVIOUS_ACTION=L0: A=A(*, {ROLE=[OFFICIAL]}), I=I(REWARD, *), C=C({PREVIOUS_ACTION=L0: A=A(*, {ROLE=[CITIZEN]}), I=I(VIOLATE, *), C=C(*), O=(null)}), O=(null)}), O=(L1: A=A(*, {ROLE=[OFFICIAL]}), D=0.5 (inv), I=I(REJECT_APPEAL, *), C=C(*), O=(null))

A=A(*, {ROLE=[CITIZEN]}), D=0.5, I=I(<u>APPEAL</u>, *), C=C({PREVIOUS_ACTION=L0: A=A(*, {ROLE=[OFFICIAL]}), I=I(<u>REWARD</u>, *), C=C({PREVIOUS_ACTION=L0: A=A(*, {ROLE=[CITIZEN]}), I=I(<u>COOPERATE</u>, *), C=C(*), O=(null)}), O=(null)}), O=(L1: A=A(*, {ROLE=[OFFICIAL]}), D=-0.5 (inv), I=I(GRANT_APPEAL, *), C=C(*), O=(null))

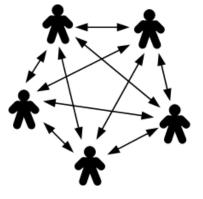
Summary

- Leveraging agents to explain scenarios
 - «Institutional narratives»
- Drilling across all levels of social organisation
 - Micro, meso, macro
- Generic approach
 - Identify attributes (social markers), actions, feedback
- Use cases
 - «Cheap deliberation» \rightarrow injection of results into decision-making
 - Intrusive
 - Inspection of scenario from agent perspective
 - Non-intrusive

Challenges & Outlook

- Readability
- Performance (Memory)
- Explore application in policy analysis
- Provision as plug-in

Micro-Agent Platform Inspector	- 🗆 X
Registered Agents/Roles	Inspecting Role 'nAdicoCorruption.Citizen' on Citizen_0000019
Platform (100 agents) ← Citizen_0000001 ← Citizen_0000002 ← Citizen_0000004 ← Citizen_0000005 ← Citizen_0000006 ← Citizen_0000008 ← Citizen_0000009 ← Citizen_0000010 ← Citizen_0000010 ← Citizen_0000010 ← Citizen_0000012 ← Citizen_0000013 ← Citizen_0000013 ← Citizen_0000014 ← Citizen_0000015 ← Citizen_0000016	 NAdicoGeneralizer - aggregationStrategyGeneralization: AGGREGATION_SUM NAdicoGeneralizer - cachedNAdicoStatements: (10) (L0 (Count 4): A=A(*, {ROLE=[CITIZEN]]), D=0.0 (INDIFFERENT), I=I(IGNORE, *), C=C(*), O=(null)) L0 (Count 1): A=A(*, {ROLE=[CITIZEN]]), D=0.0 (INDIFFERENT), I=I(IGNORE, *), C=C(*), O=(null)) L0 (Count 1): A=A(*, {ROLE=[CITIZEN]]), D=0.0 (INDIFFERENT), I=I(REVICUS_ACTION=L0: A=A(*, {ROLE=[CITIZEN]]), I=I(IGNORE, *), C=C({PREVIOUS_ACTION=L0: A=A(*, {ROLE=[CITIZEN]]), I=I(IGNORE, *), C=C(*), O=(null)) L0 (Count 1): A=A(*, {ROLE=[CITIZEN]]), D=0.5 (MAY NOT), I=I(REVICUS_ACTION=L0: A=A(*, {ROLE=[CITIZEN]]), I=I(COOPERATE, *), C=C(*), O=(null)) L0 (Count 1): A=A(*, {ROLE=[CITIZEN]]), D=0.0 (INDIFFERENT), I=I(REWARD, *), C=C(*), O=(null)) L0 (Count 1): A=A(*, {ROLE=[CITIZEN]]), D=0.0 (INDIFFERENT), I=I(IGNORE, *), C=C(*), O=(null)) L0 (Count 1): A=A(*, {ROLE=[CITIZEN]]), D=0.0 (INDIFFERENT), I=I(ACCEPT, *), C=C(*), O=(null)) L0 (Count 1): A=A(*, {ROLE=[CITIZEN]]), D=0.0 (INDIFFERENT), I=I(ACCEPT, *), C=C(*), O=(null)) L0 (Count 1): A=A(*, {ROLE=[CITIZEN]]), D=0.0 (INDIFFERENT), I=I(ACCEPT, *), C=C(*), O=(null)) L0 (Count 1): A=A(*, {ROLE=[CITIZEN]]), D=0.0 (INDIFFERENT), I=I(ACCEPT, *), C=C(*), O=(null)) L0 (Count 1): A=A(*, {ROLE=[CITIZEN]]), D=0.0 (INDIFFERENT), I=I(ACCEPT, *), C=C(*), O=(null)) L0 (Count 1): A=A(*, {ROLE=[CITIZEN]]), D=0.0 (INDIFFERENT), I=I(ACCEPT, *), C=C(*), O=(null)) L0 (Count 1): A=A(*, {ROLE=[CITIZEN]]), D=0.0 (INDI NOT), I=I(ACCEPT, *), C=C(*), O=(null)) L0 (Count 1): A=A(*, {ROLE=[CITIZEN]]), D=0.0 (MAY) NOT), I=I(ACCEPT, *), C=C(*), O=(null)) L0 (Count 1): A=A(*, {ROLE=[CITIZEN]]), D=0.0 (MAY NOT), I=I(ACCEPT, *), C=C(*), O=(null)) L0 (Count 1): A=A(*, {ROLE=[CITIZEN]]), D=0.0 5 (MAY NOT), I=I(ACCEPT, *), C=C(*), O=(null)) L0 (C
Citizen_0000018	Specify search terms separated by whitespace or framed by quotation marks (e.g. "ad Search Automatic highlighting Case-sensitive Reset Jump to next Number of map entries before
Citizen_0000020 Citizen_0000021 Citizen_0000022 Citizen_0000022 Citizen_0000023	Image: Constraint of the second s



Questions/Thoughts?

Unleashing the Agents: From a Descriptive to an Explanatory Perspective in Agent-based Modelling

Christopher K. Frantz <u>christopher.frantz@ntnu.no</u> Slides → <u>christopherfrantz.org/publications</u>

Social Simulation Conference 2018 20th-24th August 2018, Stockholm

