Micro-agents on Android: Interfacing Agents
with Mobile Applications

Christopher Frantz, Mariusz Nowostawski, Martin K. Purvis
{cfrantz, mnowostawski, mpurvis}@infoscience.otago.ac.nz

Department of Information Science, University of Otago, New Zealand

Abstract. The comparatively recent move towards smartphones, and
along with this new operating systems, such as Android, opens up new
opportunities and offers potential to build new mobile agent-based ap-
plications.

Android gives applications access to a wide-ranging set of sensors and
different communication channels — realizing the notion of nomadic com-
puting — and supports a concurrent application layout based on loosely
coupled components. This combination makes it particularly suitable for
agent-based applications. Yet, it has several limitations: Android is not
a multi-agent system on its own behalf and does not consistently employ
loose coupling to give access to its capabilities.

To address those concerns we have ported our lightweight p-agent frame-
work p? to the Android platform and directly interfaced it with Android
platform facilities. This offers mutual benefits: agent-based applications
can access Android functionality in a loosely coupled and unified fashion,
while at the same time allowing the developer to consistently think in an
agent-oriented manner. Android can use the py-agent platform as a light-
weight middleware module to build distributed applications in a hybrid
fashion.

We present our system architecture, called Micro-agents on Android or
MOA, and describe an example application using this approach as well as
a performance benchmark. We further outline potential application areas
and contrast it to existing approaches to build multi-agent applications
on Android.

Keywords: multi-agent systems, mobile applications, p-agents, micro-
agents, agent organisation, android, MOA, benchmark

1 Introduction

The consideration of mobile devices in multi-agent systems has often been limited
to the provision of a downsized derivate of the full multi-agent system imple-
mentation (for Java implementations typically targeting Java 2 MicroEdition
(J2ME)), resulting in limited performance and a reduced feature set. Examples
for this are JADE-LEAP [9] and 3APL-M [8].

The current transition from feature phones (with closed software platforms)
to the increasingly popular smart phones (open platforms, 3rd party developers

and applications as a central feature) shows a significant change of the potential
to use of agent-based applications on mobile devices. Smartphones come with a
capability set that is foreign to regular stationary systems. This includes multi-
modal interfaces, a wide-ranging sensory inputs (e.g. accelerometers, gyroscope,
camera(s), GPS) and various communication channels (such as Internet, SMS,
Bluetooth) which makes nomadic computing a realizable possibility. The 'smart-
ness’ of applications on those devices doesn’t typically derive from sophisticated
intelligent features, but instead, from a meaningful combination of those new
capabilities in a both flexible and efficient manner. Consequently, many applica-
tions on those devices have a mash-up character (for example in the context of
location-based services) with a stress on reusable application components.

A promising approach to facilitate the smooth composition of those applica-
tion elements is provided by the increasingly deployed mobile application plat-
form Android [5]! which enforces a modeling paradigm of asynchronously com-
municating loosely coupled application components.

Android’s platform and organisation shows some similarity to the princi-
ples of multi-agent systems. However, Android does not fully relieve application
developers from low-level aspects such as interacting with actual sensors or com-
munication handling, and demands for an explicit handling of threads to avoid
applications with poor responsiveness or performance problems. Thus, apart
from the wide-ranging functionality and increased computing power available,
smartphones still demand careful software engineering and cannot afford straig-
htforward translation of heavyweight agent concepts directly to them — even to
those running Android.

We think that lightweight efficiently communicating p-agents are a useful
approach to provide a symbiotic advantage for mobile technologies and allow an
efficient implementation of agent-based applications on Android-based mobile
devices by

— providing an organisational model to structure application functionality,

— transparently interfacing with Android application components,

— offering better performance than Android’s builtin inter-component commu-
nication mechanism (which is to be shown in this work), and

— serving as a light-weight middleware towards Android application compo-
nents to facilitate distributed applications.

To show this potential we first introduce Android’s concept of application com-
ponents and the interaction mechanisms. Then we introduce our p-agent archi-
tecture and show its potential to interoperate with Android. Later, we describe
the architecture of "Micro-agents on Android’ (MOA). We describe an actual
application based on MOA to demonstrate its use for application development.
We point out potential application areas of MOA based on its flexibility and
interfacing qualities. Finally we relate it to existing approaches to use agents on
Android.

! Android has increased its market share (for smartphone operating systems) to about
33 percent in Q4 2010 — from about 8.7 percent in Q4 2009 [2].

2 Android and p-agents

2.1 Android Architecture and Developmental Principles

Android [5] is a Linux-based software stack and application execution environ-
ment for use on mobile devices. It comes with a comprehensive set of libraries
for a wide range of aspects such as security and GUI development.

Applications themselves, including the built-in ones such as the phone appli-

cation, are composed of a dynamically linked combination of application com-
ponents. Android defines four basic types of application components, namely:
activities, services, broadcast receivers and content providers [4]. Activities run
in the foreground, are rather short-running, present a user interface, and can
directly interact with the user. Multiple activities can be composed to create
more comprehensive applications (e.g. wizards). Services complement activities,
as they run in the background and are relatively long-running. Broadcast re-
cetvers are started and run upon announced broadcasts (e.g. indicating system
start or received SMS). Broadcast receivers can then start activities or servi-
ces and are destroyed immediately after execution. Content providers maintain
storage for specific data sets (e.g. the phone contacts) and allow access by other
components.
Activation and communication between those components is done asynchro-
nously via messages, called intents?. Android interprets intents as an abstract
request specification. As intents themselves represent a generic, dynamically ty-
ped data structure, they can hold arbitrary application-defined content and allow
late runtime binding. This mechanism ensures loose coupling of the application
components.

Intents can be sent either in an explicit manner, using the target compo-
nent’s class name, or in a more elaborate implicit manner. Implicitly resolved
intents can contain either of the following elements which allows to match intents
against so-called Intent Filters linked to individual application applications re-
gistered with the Android instance. Those can include Actions, which the target
component needs to perform (such as calling (CALL)); Data, which are uniform
resource identifiers (such as tel://7843982); and finally Categories, which indi-
cate an alternative for target component resolution and describe characteristics
of the target application (e.g. BROWSABLE indicates that the target activity
can be invoked by a browser). Along with this, intents can encapsulate arbitrary
data (so-called extras) passed as key/value-pairs.

Comprehensive information on Android’s architecture and details on the ap-
plications components can be found under [5].

2.2 The p-agent Concept and its Implementation

p-agents are goal-directed, autonomously acting entities without a particular
prescribed internal architecture. However, we would expect the architecture to

2 The only exceptions are content providers. Intents are not used for the activation of
content providers; in this case a content resolver is used.

support the notion of hierarchical agent levels of abstraction — i.e. y-agents may
contain within their internal architecture other, more elementary p-agents —
and we expect interactions to be based on efficient asynchronous and/or syn-
chronous message passing. Although the mentioned aspects find, in stronger or
weaker sense, consideration in conventional agent systems, one key objective of
p-agents is to allow a consistent ‘modeling in agents’, even when ’drilling down’
to the lowest level of implementation (e.g. primitive p-agents wrapping external
resources).

We see the multi-level modeling with the combined use of pu-agents and even-
tual heavier notions as the computationally rational approach to satisfy the key
characteristics of Agent-Oriented Software Engineering (AOSE) [7], namely

— Decomposition of functionality down to an appropriately fine level of granu-
larity,

— Abstraction by selective hiding of lower levels of the agent organisation, and

— Organisation which consistently describes the overall structure.

Inasmuch resource constraints (such as memory and battery capacity) are of par-
ticular concern in the context of mobile computing (and continue to be a concern
with the more powerful smartphones) we see p-agents as a low-threshold and
easy-entry approach to allow the contemporary use of agent-based technology
on mobile devices.

Although p-agents do not commit to a particular internal architecture type,
they are goal-directed, engage in multiple conversations, are computationally
cheap and put strong focus on efficient execution and interaction so as not to
harm overall system performance; with p-agents the choice to instantiate yet
another agent should have limited impact on system resources but be a matter
of modeling pragmatism. Functionality is composed of and embodied by a larger
number of functionally small entities at different levels of granularity. Because
the efficiency of communication is paramount, the architecture affords two levels
of communication: synchronous communication via direct method calls bound
at runtime and asynchronous message passing.

In order to clarify the organisational aspects of the p-agent metamodel (shown
in Figure 1), it is discussed before giving a brief description of the overall plat-
form architecture of our platform which we call p? [3].

et]

subscribe/

GroupLeader
" S R
1.

! lays
is group P -
member SocialRole

124

[Agent] [PassiveRole | [MessageFilter|

Fig. 1. Core Relationships in >

The p-agent model is based on the KEA model [10] and identifies roles as
first-order entities with various specializations. p-agents play an arbitrary num-

ber of roles. Roles, however, come in three first-level specializations, namely
Group Leader roles, Passive Roles and Social Roles. Passive roles allow the most
simplistic agent implementations only providing synchronous inter-agent com-
munication. Their execution is extremely efficient, and programmers can use
these to implement low-level functionality, in places where more coarse-grained
agent implementations would fall back to embedded object-oriented or structu-
red programming approaches. Social roles, in contrast, communicate via asyn-
chronous messages and allow long-running concurrent conversations. Those are
the main concern of this paper. Group leader roles are specializations in con-
nection with the organisation of u-agents. By default, each agent is associated
with at least one group, its primary group. The group leader role allows any
p-agent to create a group itself and manage so-called sub-agents. The only ex-
ception is the predefined SystemOwner agent, which is the only agent to be
its owning group’s owner — a recursion termination condition for the emerging
agent hierarchy. In consequence, a consistent hierarchical organisation of arbi-
trary depth can be modelled using agent-oriented abstractions, not only allowing
the decomposition into agents but also the definition of abstraction layers (by
hiding sub-agents beyond a given level). The modeling of functionality can then
be handled to any degree of granularity.

MessageFilters which are a specialization of social roles, and are a helper
construct to support the organisational modeling and functional decomposition
into sub-agents by means of message-based delegation. Incoming messages on the
super-agent are dispatched to registered message filters (which are sub-agents
playing the Message filter role). Message filters then match messages against
individual patterns® and eventually process those.

However, message filters are just one helper mechanism to handle the functio-
nal decomposition in a semi-automated manner; the application developer is free
to model the decomposition by other means (e.g. explicit definition of agent /sub-
agent relationships and in-code handling of functionality delegation). For all ca-
ses, though, agents will at least be sub-agents of the SystemOwner agent to allow
consistent platform management (e.g. shutdown).

Role implementations themselves register applicable intents which allow the
resolution of roles to dynamically bind requests. In p? intents resemble the no-
tion of intentions and include the information necessary for fulfillment. Intents
in ©? have a similar function as Android’s intents, but instead of a fixed method
set (as with Android), intent type implementations are entirely left to the ap-
plication developer. As a consequence, u? intents can have arbitrary structure
(potentially including both properties and operations), which is not problematic,
since only the requester and the executing agent need to know the semantics of
the intent internals.

Any role can register applicable intents (which its implementation needs to be
able to handle) and request the execution of intents, hence, agent functionality
can be composed across the entire agent organisation. Any execution request

3 Patterns can be of a simple kind and merely test for particular message fields, or
they can be more complex by taking the individual agent state into account.

(sent via send(intent)) will receive a response either by the fulfilling agent or the
platform agent in case of failed automated lookup of a potential target agent.

The event mechanism in p? follows the Publish-Subscribe pattern and is
similar to the intent approach, but it requires the definition of the source of an
event apart from the otherwise free implementation by the application developer.
Once the event is raised all agents (respectively their roles) subscribed to the
event are notified. Intents, in contrast, are only delivered to one agent which is
capable of fulfilling the intent (as determined by the platform).

The event subscription mechanism equally serves as a hook to react to system
events (such as newly created agents, connecting platforms etc.). Both the intent-
based dynamic binding and the raising of events works fully distributed across
connected platform instances.

2.3 Comparison of ;? and Android

The notions of intents highlighted in the previous sections differ in Android and
p%. While intents themselves are message containers in Android, p? introduces
a separate message container (the MicroMessage) which encapsulates intents.
p-agents do not necessarily rely on intents (if not using dynamic binding), and
they can send any payload to an arbitrary agent (e.g. by addressing messages
via agent name). Moreover, unlike Android’s intents MicroMessages allow for
the specification of a sender.

One of the key facilities for a MAS is the ability to dynamically bind com-
munication destinations. Android’s approach uses implicit intents which allow
the lookup of registered intent filters in order to invoke an application compo-
nent. 42, in contrast, looks up p-agents playing roles which have registered their
applicable intents.

Overall, p-agents themselves can be seen as an equivalent to Android’s ser-
vices. Both have a lifecycle management and persist for longer periods of time
(unlike the rather short-running activities in Android). However, Android’s servi-
ces do not show autonomous capabilities and are externally activated to provide
their service. Additionally they do not engage in actual conversations. A key
difference from the application modeling perspective is Android’s lack of an or-
ganisational model. Apart from the different application components Android
does not provide modeling means for a structured application organisation.

Activities in Android are similar to agent operations which are not explicitly
modelled in 2 but are the result of interactions or are initiated to perform
a specific task instance. In Android, activities have similar functionality but
additionally provide a user interface.

The final concept to discuss is that of events. Android reacts to external
events via broadcast receivers whose functionality can be implemented by the de-
veloper (e.g. sending intents to other activities). u? provides an explicit subscrip-
tion mechanism. Roles can subscribe to specific event types and will receive an
event notification once raised. Both broadcast receivers and events can provide
payload along with the notification.

Table 1 provides an overview on the similarities discussed to this point.

Table 1. Comparison of Components in Android and z2

Component Android 1w

. Intent encapsulated
Message structure/container Intent o

in MicroMessage

Dynamic binding mechanism Intent filter Applicable intent
Persistent active entity Service p-agent
Operation Activity p-agent operation
Events Broadcast receiver Event subscription

3 p-agents on Android

3.1 Design

The notion of loose binding between p-agents and Android’s application compo-
nents motivates an integrated approach for mutual benefit: y-agents enable an ef-
fective organisational modeling of agent-based applications on Android with un-
restricted access to the device capabilities (sending SMS/MMS, retrieving GPS
coordinates, accessing the phone’s address book). In addition to this, u-agents
can potentially directly and spontaneously interact with existing applications or
the user (e.g. to pick an address book entry) by raising according intents in the
Android subsystem — supporting the principle and benefits of open systems.

Legacy Android applications, in on the other hand, can access p-agent capa-
bilities, respectively delegate functionality to p-agents, or use the entire py-agent
framework as a middleware for distributed applications spanning across mobile
devices as well as stationary devices running the desktop version of u2.

In order to realize this potential, u? has been ported to Android (as a first
step) and then (as a second step) the infrastructure of Android and p? have been
mapped against each other, constituting MOA. Its full schema is visualized in
Figure 2 and explained in the following section.

The interaction between Android and the p-agents is mediated via a mu-
tually linked p-agent/service entity. Each of those two linked components (the
AndroidInterfaceAgent and the MicroAgentInterfaceService in Figure 2) repre-
sents the interface to the according technological counterpart, i.e. for Android
applications MOA appears as ’yet another service’ whose lifecycle can be con-
trolled from Android; p-agents perceive Android as ’yet another agent’ providing
services to other agents (indicated by registered applicable intents). The purpose
of this combined agent /service is the dynamic conversion of requests/events rai-
sed from either side. Detailed differences handled by the conversion mechanisms
are:

— The respective intent class structures of 2 and Android differ considerably.

— Android’s intent invocation mechanisms require a specification of the ap-
plication component type to be invoked (i.e. Activity (via startActivity())
or Service (via startService()). In p? this is not of concern, as addressed
entities are always agents respectively roles.

p-agent platform Android

..................... J... P vy Broadcast
[ArgEs e | (I — — — — —<;E
. Intent

I SendSmsintent Messaging
___________________ CapabilityMapper Android MicroAgent E:;::\;J&;r
Interface Interface
Agent Service = —_—_—_—_—_— -_
=T |
— Sms Locgfion
_ Utility utliy | /.
Legend

Sub-agent =~ Thtent 1 Applicable intent Appllcatlon components
relationship fm===mmme (1-agent platform) Andr0|d Broadcast
| mmmmmm—— Registered Intent filter M - Android Receiver
— — Android Intent | IntentFilter 1 (Android) Service Activity

Fig. 2. Architectural Schema of MOA

— Android’s intents (hereafter, for clarity, called AndroidIntents) do not main-
tain an explicit sender reference but invoke callbacks upon processing in the
calling application component.

To match its more limited dynamic binding capabilities, an intent specializa-
tion rebuilding the AndroidIntent class method signature is provided with the
p-agent framework, which, in addition, allows the specification of the applica-
tion component type. This particular intent type (AndroidExecutionIntent in
Figure 2) is registered as an applicable intent with the interfacing p-agent. Thus
any intent to be raised in Android will consistently be resolved to this p-agent.
The Android service tied to this p-agent additionally adds a custom sender field
to any AndroidIntent and uses a dedicated activity (see IntentExecuterActivity
in Figure 2) to raise all intents in Android. By implementing this Android acti-
vity’s onActivity Result() method, this IntentExecuter Activity it will be notified
upon the processing of an intent. Maintaining the reference of the sender agent
then allows eventual responses from an invoked application component to be for-
warded to the original sender p-agent (e.g. response to request for user input),
thus overcoming the absence of a sender specification in Android. This allows
u-agents to formulate Android intents and thus directly interact with any other
installed Android applications.

Since not all Android functionality — in particular hardware capabilities —
can be accessed through Intent-based interactions, additional Utility compo-
nents (which are either activities or services)* are provided with MOA and are
called from the interfacing service. Capabilities necessitating encapsulation in
utility components are the different 'managers’ which control Android capa-
bilities (such as LocationManager to provide location information or SMSMa-
nager which allows the sending of SMS messages). Those utility components

4 Figure 2 shows the SmsUtility and LocationUtility activity /service as examples.

are complemented with Capability mapper p-agents (e.g. MessagingCapability-
Mapper, LocationCapabilityMapper) which register according applicable intents
(e.g. SendSmsIntent, LocationRetrievallntent, LocationSubscriptionIntent) and
ensure the proper conversion to AndroidIntents as well as the interaction with
the according utility component. Those capability mappers are modelled as sub-
agents of the interfacing p-agent, thereby exploiting the modeling capabilities
provided by the p-agent concept. Their registered applicable intents can be rela-
tively simple, thus breaking down the Android capability into numerous specific
intents or combining those into more coarse-grained intents.

From the Android side the InterfaceService can either be directly addressed
via explicit intents (using the class name) or implicit intents which are resolved
via according intent filters (represented as IntentFilter in Figure 2).

Another noteworthy aspect — and of particular relevance when considering
the context of nomadic computing — is the handling of system and/or applica-
tion events. In order to receive events originated from the mobile device, such
as receiving an SMS, the InterfaceService registers broadcast receivers for corre-
sponding events (see Broadcast Receiver in Figure 2). The service itself forwards
the message (via its p-agent counterpart) to the corresponding capability map-
per which raises an event in the p-agent framework. Any subscribing agent will
then receive the message (e.g. SMS message) via the event subscription mecha-
nism of the p-agent framework. This way u-agents can both address and receive
intents/events from Android.

Expanding further on the potential symbiosis of MOA and Android, it is
worth noting that Android applications can use MOA as a lightweight middle-
ware for distributed Android applications, since MOA will dynamically dispatch
application-dependent intents using its addressing mechanisms by sending an
intent to the service and interpreting it as a distributed p-agent event which
ensures the dispatch to subscribing agents on any connected platform instance
running on a mobile device or a desktop machine. This offers a significant infra-
structural extension to Android, whose serialization per se is not fully compatible
with the one of desktop JVM instances.

In addition to the functional benefits realized by the interaction-centric dy-
namic linking associated with this approach is the nearly complete platform-
independence of p-agent implementations; they run both with the desktop as
well as the Android version of p2. Portability limitations (e.g. when relying on
JVM languages not running on Android itself) can be overcome using the cross-
platform dynamic linking mechanism.

3.2 Context-Aware Assistant Application

To get a better impression on designing MOA-backed Android applications, we
describe one example application using this approach. In this scenario an appli-
cation receives an incoming message and must decide how to change the phone’s
preferences in a location-sensitive manner and react to incoming calls or messa-
ges depending on the sender’s importance. A schematic overview is provided in
Figure 3 and discussed in the following.

p-agent platform

Android

[RemotePratform
) ConnectedEvent

Agent

GeoZone

T ProgimiyEvent

4

Event |
External

i P

Request |
Responder

y

Event {

Broadcast
Receiver

Android | MicroAgent Nt
—————————————— Interface | Interface Sa_ LO kac
Service Souip
Priority _5 5L
Handler - cu U§er
Activity Dialog

X

SmsCapabilityMapper }—|
1 VibratorCapabilityMapper —|
S _i SoundCapabilityMapper }—\ A

Legend

MOA

functi
mappings

I

torUtility

MicroMessage with
(u-agent) Intent
MicroMessage with
Event

Applicable intent
(u-agent platform)
Subscribed event
(u-agent platform)

T TeniETter | Reglstze;izrlgitg)m filter

Application components

‘Android
Activit;

Service
Fig. 3. Schematic Overview on Location-Aware Mobile Application

Broadcast

Receiver

Android Intent H

The application consists of a legacy Android activity used to maintain coor-
dinates for locations of concern, such as: working place, main street, home and
associated phone profiles. Additionally, another activity (ContactAnnotator) an-
notates contacts saved in the phone with priorities indicating their relevance to
the phone owner (e.g. high priority for family members or boss). The storage
locations for both data sets remain in the Android realm but are maintained
by so-called content providers. Upon the start of the InterfaceService, MOA is
started along with application-related agent implementations. In order to main-
tain actual agent implementations together with the related Android application
components, an AgentLoader instance is passed to the InterfaceService which
specifies the initialization of the p-agents along with the Android application.

The InterfaceService subscribes to proximity alerts for the entered coordina-
tes. Once reached an according event is raised (EnteredProzimityEvent), upon
which the p-agent managing phone profiles (PhoneProfileManager) activates the
according phone profile (e.g. disabling phone sounds and activating vibration in
workplace environment). This includes the handling of potentially overlapping
locations, in which case the more restrictive phone setting is chosen. An event
which could also activate a particular profile (as an alternative to GPS-based
location determination) could be a connecting p-agent platform associated with
a particular environment (e.g. workplace).

When receiving a phone call or text message, the InterfaceService is noti-
fied (Arc 1 in Figure 3), and the u-agent receiving the incoming request decides
— depending on the current profile (Interaction 3) and priority of the sender
(Interaction 4/5a) — how to react, e.g. if sounds are disabled in the workplace

environment, call can be ignored, answered with automatic SMS message pro-
mising a return call, or even override phone profile (for very important calls).
In cases where the sender is not yet annotated (e.g. recently added), u-agents
can generate an Android intent to open an application-specific dialog (5b) in
order to allow the annotation in real-time and handle the external request ac-
cordingly. This simple example shown here exemplifies the potential to delegate
functionality to embedded p-agents. Doing so provides structured agent-oriented
modeling along with a flexible extensibility using elements such as synchroniza-
tion of contact annotations with other connected phones, and consideration of
calendar entries (on local phone and remote machines) to allow more precise
responses where appropriate ("Am currently in a meeting with XY,”).
Key advantages of using p-agents in conjunction with Android are:

— Consistent loose coupling — p-agents can address all Android capabilities in
a unified loosely coupled manner; modelling of functionality is reduced to
the mere composition of these intents. At no point do agent names need to
(but can) be involved.

— Agent-oriented modeling — modeling applications using agent organisations
with multiple levels of functionality granularity for maximum reuse. The
flexible definition of intents and association with appropriate p-agents al-
lows mobile application developers to effectively specify their intent-based
functionality repository while using the built-in organisation mechanisms to
structure their applications.

— Distributed applications — MOA can be seamlessly distributed; developers
do not need to deal explicitly with any network-related aspects.

— Performance — As briefly elaborated in the following subsection p-agent in-
teraction outperforms Android’s internal communication mechanism consi-
derably, allowing effective decomposition into agent societies without perfor-
mance loss.

A further consideration is the more extended realization of the open system
principle, since agents can proactively interact with Android components which
— in the context of MOA — represent ’'their’ environment.

3.3 Performance

To demonstrate the performance of MOA’s interaction mechanisms, we con-
structed a benchmark scenario for both AndroidIntents and p-agent intents. The
scenario is loosely based on the previously described context-aware application
and was built as both a native Android application and as an application using
the MOA approach. The internal functionality of agents and services is norma-
lized to isolate the relevant comparative interaction performance. The scenario
is shown in Figure 4 and described with references to the right section of the
figure (Android scenario).

The BenchmarkService (started via an Android activity) runs the given
scenario for a specified number of rounds with the according benchmark variant
(MOA or native Android).

Benchmark
Micro-agents on ‘- Service ‘Native’ Android

Android scenario - 9 \ scenario
-~ | \
‘ MicroAgentinterfaceService ‘
C AndroidinterfaceRole) I N !

- __ I | Legend

2

MicroMessage with

Response Response | (u-agent) Intent
Manager 8 Manager _.._. MicroMessage with

3 2/ 6 (u-agent) Event
/ s| |e \ / 3 4 5\
3 » '] X

7
-agent Android
Hag Service
Name Priority Name Priority
CResolver} CResolver) Gespondea ‘ Resolver

‘ Resolver — — Android Intent
p-agent platform

Responder

Fig. 4. Benchmark Scenario for Interaction Performance Comparison

The system simulates the arrival of a new SMS message by generating the
initial intent which is dispatched to the ResponseManager (arc 1). The service
identifies the SMS message and requests the resolution of the received telephone
number to a name (2) via the lookup in the phone’s contact database. Upon
response (3) the SMS message sender’s relevance is determined (arcs 4, 5). If
the sender is of relevance (which is always the case in the benchmark), an SMS
response message is sent via the Responder (arcs 6, 7).

The p-agent version is functionally equivalent. It includes two additional
messages enforced by the necessary conversion between Android intents and as-
sociated MicroMessages (with intent/event payload). As such, the interaction
includes seven MicroMessages and two Android intents. In both cases the cou-
pling of components is loose; intent filters (in the Android example) respectively
applicable intents (with p-agents) resolve target components/agents. Table 2
shows selected results of the benchmark®.

Table 2. Selected Performance Benchmark Results per Scenario Rounds (with factors
indicating relative performance of Android intents to pu-agent intents)

Rounds MOA (ms)|Native Android (ms)|Factor
5 257 614 2.39

50 1834 4328| 2.36

500 17757 42446| 2.39
5000 156384 465606 2.98

5 The benchmark has been executed on an Intel Core2 Quad-Core CPU at 2.66 GHz
and 3.25 GB RAM running on Windows XP Professional SP3 using the Android
2.1 Emulator. Each run has been undertaken 10 times and the results represent the
average over the eight central results, ignoring highest and lowest values. In all the
cases, we have allowed warm-up runs of 5 rounds before the actual timing.

The results indicate a significant performance advantage of pu-agents over An-
droid intents. Given those results, the use of p-agents for interaction-intensive
applications is likely to be beneficial even if the multi-agent nature of the appli-
cation is not of primary concern for the application developer.

Android’s application components principle has potential support for low
level system features (such as Inter-Process Communication (IPC) — which is not
used in this scenario). We consider the processing overhead associated with this
as one aspect introducing inefficiencies when executing intents. Conceptually, -
agents sit below the application component level, directly built from the provided
libraries, and thus do not share these performance penalties unless they actively
interact with Android application components.

3.4 Potential Application Areas

For a better impression of the potential of MOA, we outline areas where we
deem the presented approach promising, beyond the consideration of u-agents
as lightweight middleware for distributed desktop/mobile applications.

Agent-based mobile applications
The use of MOA allows for the modelling and implementation of agent-based
applications that are compatible with desktop versions of the multi-agent plat-
form. This is of interest when considering the increasing computing power of
mobile devices. Furthermore, agent-based applications are not only restricted to
run on Android but to directly access device functionality and show the unique
capability to natively interact with Android application components. p-agents
are particularly suitable for dealing more generically with heterogeneous applica-
tion environments and representing a low-threshold approach to the development
of smart mobile applications using agent-based principles without confining the
developer to a particular technology.

Intelligent agents
The original motivation for the py-agent platform, i.e. to support the wider soft-
ware engineering advantages of agent-oriented decomposition, is equally avai-
lable on mobile devices. The architecture-independent approach does not only
provide support for agent-based organisational decomposition and abstraction
levels, but also the ability to embed particular agent architectures (e.g. cognitive
architectures) which can then directly access phone capabilities (e.g. reading and
manipulation of contacts, calendar, SMS, etc.), serving as a base for seamless
integration of agent-based with mobile technologies, to enable intelligent, agent-
based, applications. This can be realized on the devices or delegated to more
powerful desktop machines using MOA’s intent-based dynamic linking.

Robotics
Another area where the combined use of Android and agents is of practical con-
cern is the area of robotics. General-purpose robots with resource-limited compu-
ting capacity often only support a subset of necessary functionality (e.g. J2ME)
and are relatively expensive. The use of MOA facilitates the embedding of the
agent functionality in a standard Android device connected to the mechanical
robot using wireless technologies (e.g. bluetooth). This ”externalization” of the

core agent capabilities could allow more economical use of robots and make up-
grades a matter of replacing the phone. Additionally, MOA enables robots to
communicate via SMS ’out-of-the-box’ as a fallback mechanism if no other net-
work connection is available (e.g. IP-based network) — or as general means of
communication.

4 Related Work

The use of Android in the context of agent-based applications is a novel and
relatively recent development. Not surprisingly, some approaches to build agent-
based systems in conjunction with Android have been undertaken by other re-
searchers.

Agitiero et al. [1] present an approach to implement their Agent Platform
Independent Model (APIM) in Android. The implementation is entirely based
on the Android application components. Given that the elements of the APIM
largely concentrate on agent internals, the modeling of agent organisations is
not considered. Direct interaction with Android applications is not part of this
concept.

JaCa-Android [11] is an implementation of the Agents and Artifacts mo-
del on Android. It identifies agents and artifacts as first-order entities to model
agent-based systems. In order to implement agents, the approach embeds the
Jason reasoning engine, thereby welding itself to a specific internal agent archi-
tecture. Relevant Android capabilities are encapsulated as artifacts which can be
used by agents (e.g. GpsArtifact, SmsArtifact). This implementation provides
an expressive means to handle Android capabilities using AgentSpeak, including
the ability to act in remote workspaces. Agents in JaCa-Android cannot directly
formulate Android-compatible intents to interoperate in a spontaneous manner.

A last notable approach to run agents on Android is the ported version of the
multi-agent platform JADE [6]. It is conceptually weaker than any of the other
approaches and represents the consequent move to provide a JADE version for
Android. Its limitations notably include the requirement of a connected desktop
version of JADE to allow distributed operation. Apart from this only one agent
can be run on a mobile device.

5 Conclusion

Android’s infrastructure shows characteristics which make it attractive for the
development of multi-agent systems. However, its loose coupling does not extend
to actual capabilities such as sensors. The integration of Android with u-agents
brings mutual advantages:

Loose coupling and Agent-based Modeling — p-agents can address Android
capabilities and components in a consistently loosely coupled manner. Coarse-
grained Android services can be decomposed into p-agents, which increases the
reusability across different applications and remains computationally affordable
as a consequence of the better interaction performance.

Distributed applications — Android can rely on MOA’s infrastructure to build
distributed applications, across both mobile and desktop devices, allowing auto-
mated delegation of functionality.

Our p-agents further enable a hybrid approach by harmonizing with legacy
application components; MOA agents’ unique ability to directly interact with
other application components not only follows the spirit of open systems but
also supports the development of mobile applications in a cross-paradigmatic
manner.

High performance and distributedness make MOA a viable extension to the
legacy mechanisms for general application development on Android, thus pro-
moting agent-based concepts for the wider realm of software engineering.

Plugging in specific agent architectures selectively will allow the integration
of more intelligent features — beyond contemporary ’smart’ applications.

References

1. J. Agiiero, M. Rebollo, C. Carrascosa, and V. Julidn. Does Android Dream with
Intelligent Agents? In J. Corchado, S. Rodriguez, J. Llinas, and J. Molina, editors,
International Symposium on Distributed Computing and Artificial Intelligence 2008
(DCAI 2008), volume 50 of Advances in Soft Computing, pages 194-204. Springer
Berlin / Heidelberg, 2009.

2. C. Arthur. Android overtakes Symbian in smartphone sales.
http://www.guardian.co.uk/technology/2011/jan/31/android-symbian-
smartphone-sales, January 2011. Accessed on: 15th September 2011.

3. C. Frantz. Micro-agent platform p?. http://www.micro-agents.net. Accessed on:
15th September 2011.

4. Google. Application Fundamentals — Android Developers.
http://developer.android.com/guide/topics/fundamentals.html. Accessed on:
15th September 2011.

5. Google. What is Android? http://developer.android.com/guide/basics/what-is-
android.html. Accessed on: 15th September 2011.

6. D. Gotta, T. Trucco, M. Ughetti, S. Semeria, C. Cuce, and A. M. Por-
cino. JADE Android Add-on Guide. http://jade.tilab.com/doc/tutorials/JADE
_ANDROID_Guide.pdf. Accessed on: 15th September 2011.

7. N. R. Jennings and M. Wooldridge. Agent-Oriented Software Engineering. Artifi-
ctal Intelligence, 117:277-296, 2000.

8. F. Koch, J.-J. C. Meyer, F. Dignum, and I. Rahwan. Programming deliberative
agents for mobile services: The 3APL-M platform. In R. H. Bordini, M. Dastani,
J. Dix, and A. E. Fallah-Seghrouchni, editors, PROMA.S, volume 3862 of Lecture
Notes in Computer Science, pages 222-235. Springer, 2005.

9. A. Moreno, A. Valls, and A. Viejo. Using JADE-LEAP to implement agents in
mobile devices. EXP - in search of innovation (Special Issue on JADE), 3(3), 2003.

10. M. Nowostawski, M. Purvis, and S. Cranefield. KEA - Multi-Level Agent Architec-
ture. In Proceedings of the Second International Workshop of Central and Eastern
Europe on Multi-Agent Systems (CEEMAS 2001), pages 355-362. Department of
Computer Science, University of Mining and Metallurgy, Krakow, Poland, 2001.

11. A. Santi, G. Marco, and A. Ricci. JaCa-Android: An Agent-based Platform for
Building Smart Mobile Applications. In In Proceedings of LAnguages, methodolo-
gies and Development tools for multi-agent systemS (LADS-2010), 2010.

