Augmenting Android with AOSE Principles for
enhanced Functionality Reuse in Mobile
Applications

Christopher Frantz, Mariusz Nowostawski, Martin K. Purvis
{cfrantz, mnowostawski, mpurvis}@infoscience.otago.ac.nz

Department of Information Science, University of Otago, New Zealand

Abstract. The Android platform has popularized and caused a wide-
spread adoption of its application development approach based on loosely
coupled application components. This loose coupling allows for a flexible
composition of applications but also enables invocations and reuse of
individual components from third-party applications.

One problem with the original Android design is that the rather coarse-
grained application components themselves prohibit more fine-grained
decomposition. To provide more flexible loosely coupled components and
also to foster the reuse of more elementary fine-grained functionality,
we suggest the extension of Android application components with our
concept of u-agents. Moreover, the organisational aspects of the p-agent
model introduce means to structure functionality in a more systematic
manner.

In this article, we introduce our platform concept called Micro-agents
on Android (MOA) that realizes the integration of application develop-
ment principles with a lightweight notion of agency. Several scenarios are
used to describe the benefit from functionality reuse across applications
enabled by MOA. A performance evaluation demonstrates that u-agents
interact in a more efficient manner than Android services, making them
well-suited for fine-grained decomposition.

Our approach serves as an example showing how existing technology can
benefit from utilizing the modelling advantages of agent-based technolo-
gies.

Keywords: p-agents, micro-agents, multi-agent systems, mobile appli-
cations, agent-oriented software engineering, functionality reuse, agent
organisation, android, MOA, intents

1 Introduction

With the increased adoption of smartphones, the continuous trend towards ubi-
quitous computing has reached the mainstream of users. Smartphones combine
the abundance of available sensors (e.g. GPS, compass, accelerometer, gyroscope,
light and temperature) with the Internet. The perceived ’smartness’ of those de-
vices and their applications derives more from the combination of those different

information sources than from particularly intelligent features. Operating sy-
stems for smartphones cater for these application characteristics and support
notions of loose coupling as well as aspects such as intentionality. While early
generation smartphones provided environments to develop monolithic applicati-
ons, modern mobile operating systems emphasize multi-threading, loose coupling
of application parts, along with the use of a wider range of information sources.

One system that has adopted some notions of intentionality is Android [8].
In fact the Android infrastructure and architectural design has a fair degree of
similarity with multi-agent systems.

Android provides so-called application components that serve as runtime con-
tainers for particular behavioural patterns (e.g. running in foreground, running
in background, event subscription) that can be combined to realize complex
applications.

But beyond those well-specified mechanisms on how to compose applica-
tions from application components, Android does not provide distinct mecha-
nisms to organise or manage functionality on lower levels. As a result, coarse-
grained application components can combine a wide range of functionality in an
application-dependent manner, which limits the reusability of functionality sub-
sets, i.e. the application components as a whole might be accessible but the more
elementary functionality is not. This coarse-grained model prohibits the use of
functionality beyond the application component level across different applicati-
ons. To leverage the potential for better application reuse and organisation, while
being confined to the processing constraints of mobile systems, we propose the
integration of the computationally efficient notion of p-agents with the Android
architecture.

In this article, we first introduce the Android application development princi-
ples, followed by the description of our p-agent concept and its implementation.
The concept of Micro-agents on Android demonstrates how those two techno-
logies can be interlinked, and Android applications be seamlessly backed by a
fine-grained cross-application p-agent organisation. Different scenarios are out-
lined to exemplify how functionality reuse can be improved using u-agents.

2 Android and the Concept of p-agents

2.1 Android architecture and application components

Android [10], developed by Google in collaboration with the Mobile Handset Alli-
ance and released as an open source software platform, is increasingly adopted by
smartphone manufacturers. Beyond a Linux-based kernel and the device-specific
hardware drivers, it offers a comprehensive software stack of libraries centered
around the Dalvik Virtual Machine. Dalvik operates like the Java Virtual Ma-
chine (JVM) and provides its own runtime libraries. Semantically related library
functionality is controlled via so-called managers (e.g. LocationManager for all
location-related functionality) where useful. At the top layer of functionality,
applications access both the various managers and library functionality using

Java syntax. A comprehensive insight into the different architectural layers of
Android is provided under [10].

The interesting aspect from an architectural point of view is the way applica-
tions are composed. Android caters for a concurrent and loosely coupled layout
of applications by providing the following application components:

— Activities are designed for rather short-running functionality with direct user
interaction. Multiple activities can be combined to provide more comprehen-
sive functionality such as wizards.

— Services in contrast are designed to be long-running in the background.

— Broadcast Receivers are instantiated upon registered (system or application)
events and execute a particular behaviour and are destroyed after execution.

— Content Providers serve as an abstraction layer for system-wide access to
particular persistent storage locations.

All those components (with the exception of content providers) are connected
via, so-called, intents which represent abstract request specifications, have a uni-
fied structure, and allow asynchronous messaging between the aforementioned
application components. Intents allow either explicit addressing of target compo-
nents (by class name) or implicit addressing by matching intent characteristics,
such as action (e.g. VIEW to open a viewer application), handled data type, furt-
her component-related attributes, or categories (e.g. PREFERENCE indicating
that the component is a 'Preferences’ panel) against application characteristics
which are registered by individual application components (as intent filters).
Further, the content of intents can be arbitrarily defined by the application de-
veloper and is attached as extras maintained in a dynamically typed map data
structure.

Table 1 shows the structure of Android intents.

Table 1. Description of Android Intent Structure

|Andmid Intent Property [Descm’ption ‘

Action Action to be performed, e.g. VIEW, PICK
URI representation of data type and payload
to be processed (in conjunction with corre-

Data sponding action field value), e.g. tel://123454
as telephone number
Specification of the type of compo-

Category nent to handle intent, e.g. CATE-
GORY_BROWSABLE

Extras dynamically typed map structure holding data

specified by developer

Specification of component behaviour once rai-
Flags sed, e.g. always starting new component in-
stance or reusing existing one

The composition of the particular application components and their intent-
based interaction are the building blocks for any Android-based application.
This also includes core applications such as the caller application, thus giving
the application developer the power to access a wide range of system-level functi-
onality. Further information on those architectural principles of Android can be
found under [10].

2.2 Comparing Android Application Development Principles with
Multi-agent Systems

We consider the Android development approach to share various characteristics
of that of multi-agent system development, and this has motivated us to augment
Android with some of our p-agent platform features. The key characteristics in
this connection are:

— Loose coupling — Application components in both Android and MAS are
loosely coupled. The Android coupling mechanisms are equivalent to the
addressing mechanisms employed with MAS, as specified by FIPA (see [6]),
where target services or activities can be directly addressed by name (i.e. ex-
plicit intents) as well as indirectly, using implicit intents, which work similar
to a yellow-page lookup. The explicit definition of applications in Android
is effectively done in the application manifest; its actual components always
rely on runtime binding.

— Asynchronous communication — Asynchronous communication plays a key
role in both MASs and Android. It is the basis for autonomy in agent systems
and a means to participate in concurrent conversations. With respect to
Android, asynchronous messaging is used as the default mechanism for inter-
component communication.

— Decentralization — This is a core principle in both Android and MASs. Alt-
hough the underlying platform can be controlled to a certain extent, the
actual components are not centrally controlled in Android, and can only be
activated using intents. Both MAS agents and Android application compo-
nents have clearly defined lifecycles.

— Intentionality — Software notions of intentionality are in line with the notion
of the intentional stance (see Dennett [5]). While intentions in MAS represent
a concept used for practical reasoning in rational agents, in Android they
express the interest of a component to invoke another (unknown) application
component (which might succeed or fail at runtime).

— Open system — Given the implicit intent resolution mechanism, the Android
system is generally open (analogous to MAS) towards newly added applica-
tions whose specified intent filters might affect future bindings.

In summary, Android and MAS share the principles of loose coupling, asyn-
chronous communication and concurrency application layout enabled by the
decentralized system architecture. Taking the combination of those elements
into account, Android and MAS can be similarly non-deterministic; and further,

Android’s technical foundations allow its use as an infrastructure for the con-
struction of actual MAS systems. However, Android is not a multi-agent system
on its own:

— Autonomy — Although all application components in Android define a life
cycle and are asynchronously invoked, they do not exhibit characteristics of
advanced autonomy in the shape of proactive behaviour or goal-directedness.

— Interaction — Application components in Android only engage in simple
request-response interactions and do not provide facilities to model or main-
tain extended conversations (which are typical for multi-agent systems).

The use of pure Android interaction mechanisms to model a multi-agent
system is not practical, especially with “intelligent agents” in mind. However,
the integration of Android with other MAS implementations is of interest, since
it can offer the advantages of a mobile platform and can facilitate agent-oriented
software engineering on such a platform. We think that the notion of u-agents
is particularly suited for this purpose.

2.3 The p-agent Concept

To provide a context for the suggested augmentation of Android with agent-
based technology, we provide below our proposed solution. It relies on the notion
of p-agents and describes their surrounding principles.

u-agents are derived from the notion of the intelligent software agent con-
cept. As such, the p-agent concept inherits characteristics such as executional
autonomy, and reactivity, as well as proactivity and social behaviour.

In order to realize a lightweight notion of p-agents, strong assumptions about
their particular characteristics are relinquished, e.g. p-agents do not necessarily
need to show proactive behaviour. Along with this, any assumptions about par-
ticular internal architectures are abandoned. In the first instance this limits the
interoperation between p-agents to the infrastructural level, but it allows he-
terogeneous p-agent internals, e.g. purely reactive behaviour up to the level of
sophisticated reasoning. This unconstrained internal architecture is a key mecha-
nism that qualifies 'micro’-agents and allows them to be effectively of arbitrary
complexity. The low threshold of agenthood allows developers to build complex
systems from the ground up while embracing consistent agent-oriented thinking,
even on elementary levels. Using the agent metaphor on all application levels im-
proves the notion of loose coupling of application elements, which in turn eases
the maintenance of the application or rewiring the p-agents to build a different
application reusing some functionality. As a minimum of consistency, and as a
matter of application performance, y-agents commit to a common communica-
tion infrastructure based on efficient asynchronous message passing that makes
strong functionality decomposition affordable. Additionally, y-agents can use so-
called p-intents that allow request specification and automated dynamic binding
of target agents — which will be highlighted at a later stage of this discussion.
A key and distinguishing feature of p-agents is their affordance of organisatio-
nal hierarchies of u-agents: the functionality of one p-agent can be decomposed

into a number of more elementary p-agents. This requires suitable organisational
modeling mechanisms to maintain a consistent view of the application structure
and embodied abstractions.

The metamodel for a p-agent organisation of our desktop platform imple-
mentation of the u-agent concept, u? [7], is based on the KEA model [15] and

visualized in Figure 1.
'\ [C
SocialRole

p-Agent | [PassiveRole | [MessageFilter |

GrouplLeader
1.*

is group
member

Fig. 1. Core Relationships in p?

This metamodel recognizes agents and roles as the first-order entities. From
our perspective, roles are characterized as a collection of behaviours applicable
to one or more specific contexts. Each agent plays one or more roles which are
specializations of the three first-level specializations identified in the metamodel:
Social Roles, Passive Roles, Group Leaders. Social Roles represent the most
expressive role type, making use of asynchronous message passing and an explicit
message container. Passive roles only support blocking communication, which
makes them useful for very fine-grained functionality, since the interaction barely
involves any performance penalty (compared to a direct method call) while still
retaining the advantages of loose coupling between individual agents.

A fundamental aspect of this metamodel is the degree to which it supports
the organisation of p-agents into groups. By playing the group leader role, u-
agents can themselves start a group that further agents can be registered with.
The group leader has two functions: it controls its group’s members, or respecti-
vely dispatches control commands from its own group leader, but it can also
compose its functionality by combining more fine-grained functionality from its
group members. The latter agents can lead groups themselves in order to com-
pose their functionality from further sub-agents. As a result of this cascading
structure, a multi-level agent organisation emerges (as schematically shown in
Figure 2). However, group leaders need not necessarily compose their functi-
onality from sub-agents but can also simply organize sub-agents to structure
the agent organisation by functionality aspects. The hierarchy, however, does
not restrict the communication of sub-agents; sub-agents can communicate with
agents outside their group, allowing access to their functionality from across the
whole agent organisation. Note that for consistency purposes agents which are
not assigned to a particular group are members of the SystemOwner group to
enforce a consistent control structure.

Mechanisms in the p-agent context to allow the automated binding of functi-
onality — the key to a loosely coupled composition of more complex applications
— are Intents (distinguished from Android intents). Roles that can satisfy re-
quested intents (e.g. sending SMS messages) register those as applicable intents.
Any p-agent can then raise a request which is automatically delivered to the
satisfying role (intent-based dynamic binding).

These intents in the p-agent context (called p-intents in the following), deri-
ved from the mental concept of intentions, are in fact abstract execution requests
and are implemented as Java objects with a freely defined property/operation
set. Both requester and requestee need to know and understand the semantics of
the p-intent; for other agents this is not relevant. However, as part of the control
mechanism, group leaders can restrict /prohibit the adoption of applicable intents
by group members at runtime, if those intents are incompatible with the functi-
onality managed in the corresponding group. The concept of u-intents seeks to
compensate for some aspects that have been sacrificed in the p-agent concept
as a consequence of dropping the assumption of a common agent interior, such
as having a similar symbolic representation. As a consequence, u-intents offer a
neutral mechanism to share data in a common representation among p-agents.

Dynamic binding of message recipients is a core feature of py-agents but not
desirable in cases where the application developer wants to address distinct u-
agents identifiable by ID or name, or wants to employ other 1:n communication
patterns. To achieve this, p-agents additionally come with the notion of different
addressing patterns. Table 2 provides an overview over available patterns.

Table 2. Addressing Patterns for p-agent Communication in p?

Addressing s .
Pattern Description
Unicast sends message to one specified recipient

sends message to all registered p-agents
Broadcast |(differentiation between local and network-
wide broadcast)

sends message to event subscribers; model-

Multi . . .
ulticast led via event subscription mechanism
Groupcast sends message to :.111 p-agents which are
members of a certain group
Rolecast sends message to all y-agents playing a gi-
ven role
Randomcast sends message to a specified (or random)

number of random registered p-agents

p-agents can communicate using a wide range of patterns that respect the
different modeling artifacts in the concept, such as the addressing of specific
roles in the Rolecast, group members via Groupcast, and a Randomcast that

allows addressing of random p-agents (which is particular useful in applications
that rely on stochastic elements, such as games of simulations).

The final element of the metamodel to be mentioned here are Events. Each
role implementation can subscribe to particular events (such as a notification
about the initialization of a new agent or a connected platform). Their implemen-
tation is realized by extending an abstract class (which enforces the specification
of an event source) with arbitrary class structure — similar to the specification of
intents. The key difference between event and p-intents is that u-intents involve
the dynamic resolution to one of potentially multiple targets, while events are
received by all subscribers. A specific purpose of events is the environmental
embedding of p-agents, e.g. by subscribing u-agents to system-level events.

The combination of those features in our p-agent concept enables a fairly di-
rect and clear interpretation of the key characteristics of Software Engineering,
and in particular Agent-Oriented Software Engineering (AOSE) as highlighted
by Jennings and Wooldridge [13]: Decomposition describes means of breaking
up coarse-grained functionality into more fine-grained elements, Abstraction re-
fers to the necessity of limiting the scope of a developer at a given time in
order to limit the overall complexity for a given task. Organisation, finally, is
the structural specification of an agent society resulting from the application of
the aforementioned characteristics. The notion of levels and groups as means
to specify them allows an effective decomposition while providing an arbitrarily
fine-grained structure of functionality elements, both in a horizontal manner —
structured by functionality groups — and vertical manner — breaking it down,
hierarchically, to an atomic level. Abstraction is realized by focusing the develo-
per’s view on a single level or multiple adjacent levels of this agent organisation
at a given time. The application of those principles with this metamodel are
visualized in Figure 2.

//’ ------------------------------------ ‘\\
/ SystemOwner \
i]
i | !
! Group of o
> | SystemOwner | Organisation
0og L_____=Z_ | emmmmmed e ———
g = /’r ~ /’/ N Ny
S &/ \ |wagentt \i u-agent 2 VI |wagent 3| ¥
ol N 1 | 1
§ S| Ye——F e —————— =S —————— u-I----I-—
=3 Group of :: Group of " Group of Legend
S a3 p-agent 1 " p-agent 2 i} pagents | e
@) 1 | 1 | 1 ! \
| H ' 1|} Group }
|
|\ |u-agent 4| |u-agent 5 I\ |p-agent 6| |u-agent 7| |u-agent 8| 1 '\ p-agent 9| S
\ AN / o\ // ___ Group
\\ ———————— f/ e - - ~\-———’ membershlp
« Decomposition »

Fig. 2. Representation of AOSE characteristics Decomposition, Abstraction and Orga-
nisation with p-agents

A conceptual advantage of this organisational model is that it allows the
distinct application of abstraction levels by simply suppressing lower or hig-
her levels of the agent organisation where appropriate. Agent models without
an organisational perspective of this nature limit the possibility of structuring
functionality in an explicit vertical manner. Consequently their ability to express
decomposition is restricted to more coarse-grained non-hierarchical functionality
groups.

Assigning the applicable intents to p-agents (respectively roles) in this hier-
archy allows the definition of an explicit structured functionality repository that
allows the flexible use by any other agent on the platform.

At this point the focus of discussion should be turned to performance consi-
derations of the interaction mechanisms. Decomposing functionality using purely
agent-based abstractions and a hierarchical organisation will afford the use of u-
agents for even fairly primitive activities. Only by giving up assumptions about
a particular internal architecture can p-agents be used to implement agent in-
ternals depending on the application needs, e.g. a short-running p-agent with
generic functionality is used by a reasoning p-agent composing functionality
offered by primitive p-agents. In order to avoid significant performance impact
(compared to other programming paradigms) on the higher levels, efficient inter-
agent communication is particularly important on the more primitive levels of
decomposition.

An additional aspect of agent interaction is that we consider their efficient
operation in distributed environments to be imperative. In our p-agent scheme
this is further supported by the dynamic binding of functionality across different
platforms.

2.4 Implementation Aspects of py-agents

To put the u-agent concept into context we provide a brief outline of our current
implementation of the p-agent platform named ;2. We have implemented the
platform in Java [2]. The Java language provides strong platform-independence
and has become increasingly popular due to the availability of a number of Java
Virtual Machine (JVM) languages that build on Java itself, such as Clojure [12].
In the context of u-agents, this means that p-agents cannot only be developed
with heterogeneous internal architectures but can also easily depend on and
integrate different programming languages.

The platform implementation is structured into three layers as visualized in
Figure 3. The top layer, the Agent Logic Layer, captures the modelling artifacts
for application development as described in the previous section, namely pu-
agents, roles, u-intents and events.

The application developer implements roles by extending provided implemen-
tations for the different role types (i.e. passive, social and group leader roles).
p-intents and events are implemented as Java objects and can thus encapsulate
arbitrary fields and methods.

On the next lower layer, the Message Routing Layer, the platform holds a
register of all p-intents and events that are registered on roles instantiated on

Role Role
. Rtte it
5)
> A H-Agent Applicable -Intent
3 H-Agent (oo
2
> Applicable p-Intent
S
g Role
D Applicable p-Intent
< p-Agent | |
1. Register Y
p-agent, roles, p-intents
- \i \i Y
(3 " 3. Send
= Role / p-Intent / Event Register message
-
E’ Dynamic 5. Receive
= Linking message
=]
o A
o
)
= A
E Addressing Pattern
[] Decomposition
=
5 2. Regisk?r p-agent
>
© . 4a. Send
;.‘I Agent Register message—% Internal Message Transport ‘
g
g Remote Agent 4b. Send message—
] Register Synchronize __ Receive
Pt registers message
[1
=3
g Initiate Y Y |
7] E
[} Network Discovery connection to | _xte_?nal Mes:age *—r é:otnnelct‘ftormb
= remote platform ranspo emote platio

Fig. 3. Architectural Schema of p?

that platform. It serves as a basis for the dynamic resolution of roles and pu-
agents that can satisfy requested p-intents. Along with this — and in practice
largely an alternative to p-intent-based communication — the plaform offers the
different addressing patterns outlined in subsection 2.3.

The Message Routing Layer is connected with the Message Transport Layer
which resides at the lowest level of the platform architecture. It holds the register
containing the IDs of all registered p-agents, which is used to connect p-agents
with the message passing mechanisms both for local and remote communication.
This level does not deal with any other concept than p-agent identifiers. Reque-
sted p-intents and raised events are merely considered payload and forwarded
to u-agents or platforms specified on the Message Routing Layer.

From the perspective of the Agent Logic Layer the lower two layers are not
differentiated. However, limiting the links between Message Transport Layer

and higher layers simplifies the replacement of message passing facilities over
time. Along with actual message passing, the lowest layer incorporates network
discovery mechanisms to automate the connection to remote platforms.

In Figure 3 the connectors representing the registration process of u-agents
are marked as 1 (Registration of roles, u-intents and events on the Message
Routing Layer) and 2 (Registration of the p-agent ID on the Message Transport
Layer). The Connectors 3-5 show the flow of p-agent messages across all layers.

2.5 Android Application Components vs. p-agent Artifacts

Looking at the characteristics of both Android and the introduced p-agent con-
cept, loose coupling and concurrent communication are core principles in both.
Services in Android loosely reflect the notion of Agents, as they are rather long-
running and operate in the background. Activities in contrast mediate interaction
between service and user and represent visible actions of a service, i.e. agent
operations. In our p-agent concept agent operations are not explicitly modelled.
Broadcast receivers represent an equivalent to an event subscription mechanism
which, similar to multi-agent systems, integrates agents with events in their sur-
rounding. However, the similarities mentioned here reside on the infrastructural
level; services exhibit no motivational autonomy but are purely reactive and
additionally do not support complex long-running conversations.

Apart from the aforementioned application components, Android’s intents
and p-intents have strong conceptual similarities, since both are representing
request specifications. Android’s intents have a fixed internal structure and can
represent a request as well as a message container at the same time. p-intents
do not provide a fixed internal structure and are separated from the message
container provided with u?; u-agents do not necessarily use p-intents to commu-
nicate.

A further difference between Android intents and p-intents is the degree of
loose coupling. In Android, intents can be of an explicit nature, addressing a
distinct target component, but also be implicit in specifying characteristics of
its content or the target application component. In both cases the application
developer needs to know at least the target component type, e.g. activity or
service. This lowers the degree of abstraction between caller and callee. In the
p-agent context this is not of concern, as addressed entities are always p-agents.

To emphasize the use of integrating Android functionality with u-agents, a
closer look at the purpose of Android application components is helpful. Appli-
cation components are powerful means to structure applications by frontend and
backend functionality, in the shape of different runtime containers. However, An-
droid does not provide further mechanisms to allow a structured decomposition
of functionality maintained in rather long-running services which — especially in
the case of more complex applications — are holding the application’s core functi-
onality. Although one possible approach to achieve this is the use of numerous
services, the performance of intent-based interaction (which is elaborated in a la-
ter section) is prohibitive for fine-grained functionality. Moreover, Android does

not provide mechanisms to embed services in an organisational structure, which
limits the reusability of fine-grained functionality across different applications.

To support the principal idea of composing Android applications from mul-
tiple loosely coupled entities, we suggest, and have demonstrated, the general
integration of an organisation-centric p-agent layer. This allows effective mo-
deling of agent-based applications on Android systems, provides organisational
modeling facilities to legacy Android applications, and fosters the reuse of functi-
onality across different applications.

3 p-agents on Android

3.1 Design Aspects

The similarities between Android and p-agents suggest an integrated approach
which facilitates the support of Android applications with agents to encourage
reuse of functionality, offering a lightweight explicit organisational scheme, and
enabling the modeling of agent-based applications. p-agents themselves can react
to external events and access Android functionality, which allows them to act in
a real environment.

The integration of p-agents with Android, constituting MOA, is established
by linking a particular u-agent with a dedicated Android service. This makes the
interaction virtually seamless for both sides; agents make use of the functionality
offered by the interfacing agent, while Android application components interact
with the interfacing service in the same manner as with other components. Figure
4 shows this linked agent/service entity which represents the core of MOA that
will be explained in the following.

In order to link interactions, the different intent concepts of Android and
the p-agent concept are dynamically converted. This approach has limitations,
as not all Android capabilities can be directly accessed via intents but require
additional code, especially when dealing with Android’s managers (e.g. Telep-
honyManager). Depending on this, Android functionality can thus either be
directly invoked (e.g. requesting the user to pick one of the existing contacts) or
needs to be mediated with an additional mechanism.

The dynamic conversion mechanism further needs to handle the particular
differences between p-intents and Android intents. Android intents have a fixed
implementation (class structure) for dynamically typed content; p-intent imple-
mentations are structurally flexible (i.e. their structure is entirely defined by the
application developer) and merely need to implement the Intent interface. As a
consequence, a p-intent rebuilding the Android intent structure (AndroidExecu-
tionIntent) is attached to the interfacing p-agent (AndroidInterfaceAgent). This
way p-agents can directly invoke intents in Android. Android requires the spe-
cification of the target component type to be invoked (i.e. Activity or Service),
therefore p-agents need to supply this information as part of the re-modelled
Android intent.

Android intents do not allow the specifications of a sender in the case of direct
invocations. Thus, the use of a mediating IntentExecuterActivity is necessary to

p-agent platform Android
- Broadcast
Receiver
ApplicationAgent } ~{ AndroidExecutionintent I (ntem
Android | MicroAgent __ / Executer
Interface Interface Activity
Agent Service
ApplicationAgent
|
4 2
3 c
s g Location
g g Sms !
z £/ Uit uility | /...
z £ y
E o
] 2
o =
© =
o =)
Legend
p-agent)) Application components
message " “Intent_ 1 Applicable intent
Sub-agent | T~ ~~° (u-agent platform) Android \ Broadcast
relationship | ————____ . y Android Receiver
p l_"lfg’LfE”_t‘ﬂ'_‘[Registered Intent filter Service Activity

(Android)

— — Android Intent

Fig. 4. Architectural Schema of MOA

cache the sending agent, track the execution result of a particular intent, and
return eventual responses to the original requester.

In cases where Android functionality cannot be invoked in a direct man-
ner, the conversion mechanism is additionally augmented with Utility (Appli-
cation) Components on the Android side and Functionality Mapper agents on
the p-agent side. Those then encapsulate the necessary pre- and post-processing
of custom intents and manage the actual functionality. Examples include the
subscription to Location services (location updates) which cannot be directly
registered via intents but are mediated by the LocationUtility service.

We should emphasize here that the use of agent-based technology is an ena-
bler to better structured applications and to improved functionality reuse. We
have introduced this software engineering opportunity into the Android envi-
ronment without sacrificing or constraining existing system features. Applica-
tion components can still continue to address the interfacing service and other
componenets using all available Android mechanisms, thus by means of either
explicit intents (using its class name) or particular intent filters, specified by
the application developer. Thus the use of MOA does not have any impact on
functionality access by Android application components.

3.2 Application Development and Functionality Reuse with MOA

When designing applications with MOA, functionality is initially separated into
frontend and backend components. The frontend dealing with user interaction is
developed using legacy Android application components, such as Activities and
Broadcast receivers. Those are backed by a u-agent society living behind the
interfacing service. As a consequence application developers need to be aware of
both Android concepts and p-agent concepts, which are connected by MOA’s
interfacing mechanism that mediates the interaction between both worlds.

Android ‘Phone Profile Switch’

Maintain
Locations

MicroAgent Interface Service

Android Interface Role)
13
S
b= Messaging User Vibrator Location
%_ Mapper Interactor Agent Agent . Agent
i RequestUserlnput iSetSoundLevel | ActivateVibration | 7/ | SubscribeSpeed }
W]
3 RequestltemPick P2 e E'\k:eEt . :
llv 7y " . ubscribeLocation
L ShowNotification '/ Proximity E
Sms > _/_ Profile LocationProximity |
Mapper [_Androidlrg‘e;gft{eceived | Switch __Event |
iSendesInlem i iSendSmsInlenl 1 =
R
Legend
Sub-agent i aati
—_ relationgship FoTEET Applicable intent Application components
MicroMessage with | ‘===~~~ * (u-agent platform)
(u-agent) Intent [- “Eveni Subscribed event
) . __Event _| (u-agent platform) Broadcast Android
—..—. MicroMessage with) Receiver ndrol
Event " renETS Registered Intent filter Android Activity
. Jentiter (Android) Service
_—— Android Intent

Fig. 5. Basic MOA Application ’Phone Profile Switch’

Figure 5 shows a basic example application following this development prin-
ciple. The figure visualizes both the application frontend and backend. On the
backend, the Android Interface Role, which is directly linked with the Micro-
Agent Interface Service, exposes Android functionality to pu-agents in the shape
sub-agents, such as the MessagingMapper which manages its own sub-agents
(MmsMapper and SmsMapper) to structure its functionality. Further functio-
nality includes simple user interaction, access to the phone’s sound settings,

the vibration functionality and a p-agent offering access to location informa-
tion. The PhoneProfileSwitchAgent is the only actual application-related agent.
It composes its functionality from the Android capabilities mapped by MOA,
such as subscribing to particular locations and changing phone settings if in
proximity to a given location and showing a user notification. The frontend is
modelled as an Android activity which allows the user to maintain locations
and associate those with particular phone profiles. The ProfileSwitchAgent has
subscribed to the AndroidIntentReceivedEvent which notifies the p-agent once
an Android event is received and allows it to extract the relevant information.
The ProfileSwitchAgent itself offers its functionality (i.e. switch profiles) as an
applicable p-intent.

This brief example application shows the loosely coupled modelling approach
among p-agents interlinked via p-intents. It also provides a basis for further
applications that can capitalize on the implementation effort.

To give an example for the reuse potential, we extend the previous scenario
with the Driver’s Responder application (see Figure 6') which introduces further
context-sensitivity. The additional u-agent (SpeedResponderAgent) subscribes
to the CurrentSpeedEvent offered by the LocationAgent and is thus constantly
informed about the current speed. The matching frontend application component
is represented as the SpeedManager activity which allows the user to enter some
speed thresholds (e.g. 30 kph) in excess of which the SpeedResponderAgent
considers the user to be occupied with driving a vehicle. When reaching this
threshold, the p-agent requests the change into silent profile by sending the
SwitchProfileIntent offered by the PhoneProfileSwitchAgent. Beyond this, it can
compose further functionality, such as an automatic response to an SMS message
indicating that the user is busy driving (and eventually showing a notification
to the user). The scenario described here is a simplification of the particular
application scenario but demonstrates how the backend of MOA applications
can reuse functionality across different applications only relying on pu-intents
and events.

Given the risk of creating interdependencies between applications, the use of
agents (in contrast to other modeling paradigms) is useful, as they are conceptu-
ally capable of handling failed binding requests and find alternatives dynamically
at runtime (here this would be the case if the PhoneProfileApplication is mis-
sing). However, the same would be the case for interdepending legacy Android
applications. In order to extend applications by introducing new p-agents, de-
velopers only need to know the internals of relevant u-intents (e.g. SwitchProfi-
leIntent) in order to use the functionality; the executing p-agent is automatically
resolved when raising this p-intent.

The features of MOA are not merely constrained to the interaction between
Android application components and p-agents but also allow the development
of distributed applications, or simply the extension of existing applications with
distributed features. As described for the previous examples, context-sensitivity

! y-agents belonging to MOA and the previous application are greyed out to emphasize
the added functionality.

Android ‘Phone Profile Switch’

Android ‘Driver’s Responder’

— Speed
Maintain Manager Broadcast
Locations Receiver
Inco%g SMS

MicroAgent Interface Service

Android Interface Role

RequestltemPick
ShowNotification

Sms

" | LocationProximity

Event

£

S

':g Messaging User Vibrator Location

5 Mapper Interactor .. Agent

€ RequestUserlnput iSetSoundLevel | 1 ActivateVibration i./ SubscribeSpeed
[

=3

7

=

SubscribeLocation
Proximity

.. ReceivedSmsEvent _Eent__J Profile
St e T L Speed Switch
+ SendMmsintent | { SendSmslnten Responder Agent
Agent
Legend
Sub-agent
e . U : :
relationship " Ttent (Afnaph::tblei a:tr;toerrr:)
MicroMessage with |~~~ "~ H-agent p
(u-agent) Intent | F=Foo Subscribed event
a9 [___Ev_eﬁ_J (u-agent platform)
—..—. MicroMessage with
Event {_lﬁt—eﬁtl—-—iTIErjl Rengte,[\e% Inllgnt filter
_—— Android Intent | "TTTTTTT (Android)

Fig. 6. Reuse of Functionality by MOA Application 'Driver’s Responder’

of p-agents is achieved using event subscription. Along with events specified by
the application developer, platform implementations include system events such
as a notification upon newly instantiated p-agents or established connections
with remote platforms. Upon connection the realized platform implementation
also transmits the current location. The previous scenario can thus easily be
extended with a synchronization feature, as visualized in Figure 72.

The ProfileSwitchAgent subscribes to the PlatformLocationEvent (which is
raised once a remote platform connects). Depending on location, or name of the
remote platform, the ProfileSwitchAgent can raise the SynchronizePhoneProfiles
intent that tries to synchronize the phone profile for specific locations as specified
by the user. As such, this works as a location-sensitive backup mechanism.

In this context it shows that the composition of applications and reuse of
functionality by different applications can thus extend across different devices
that run MOA or p?, the desktop implementation of the u-agent concept. This
allows extended reuse of functionality, specifically the use of functionality which
cannot be provided on the local device (e.g. printing mediated via a desktop pc).

2 Various p-agents that are not relevant in this context are omitted in the figure.

Android ‘Phone Profile Switch’ Android ‘Driver’s Responder’

. . peed
Maintain Manager Broadcast
Locations Receiver

Inco[{ﬂng SMS

MicroAgent Interface Service

Android Interface Role SystemOwner
N
! []
= Vibrator Location I %é
= Agent - Agent ; ze
{SeitSoundievel § | ActivateVibration §+7 S~
‘qc: 1 SetSounadLevel ¢} ActivateVibrat \Ol} / ﬂ.’ 3 .%
‘?’ bt g SyncAgent § g
i [CurentSpeedEvent | ynoAg 8¢
s — s Z3
—_—— t Synchronize 1} 3
- ! 4
- I;:ggxg:ti_» —_EBvent___IProfile | g | __—1 ™ i PhoneProfiles }

Fig. 7. Synchronizing of Phone Profiles across desktop and mobile platform

This equally enables desktop pc’s to use the functionality of the mobile device
(e.g. sending SMS messages).

Application development with MOA can thus be realized in a consistently
agent-based manner involving the provision and implementation of intent functi-
onality as well as events in a location-independent manner. The entire handling
of all the network connections is delegated to the MOA (or, respectively, its
desktop equivalence, ?).

Apart from the concrete reusability aspects of functionality as described
above, the decomposition into p-agents enables a more emergent view on ap-
plications.

Android applications are generally defined by an application manifest that
specifies all related applications components. This feature is generally desirable
to ensure coherent applications and address security concerns by clearly asso-
ciating application components with applications. In principle p-agents allow a
dynamic composition of applications, since p-agent functionality can be added
at any time during an application’s runtime, thereby allowing the development
of more adaptive applications, e.g. changing application behaviour depending on
usage. This aspect will become even more interesting and powerful once Android
allows just-in-time compilation, which will enable the development of u-agents
at runtime.

3.3 p-agents as Event Sources

Android application development characteristics and the conceptual fit of u-
agents also facilitates addressing another aspect that is relevant for applications
that are not backed with the MOA approach.

p-agents make functionality of Android managers more accessible, since it
is now uniformly expressed in the notion of u-intents. Referring back to the
example application scenario of combining PhoneProfileAgent with the Speed-
ResponderAgent automatically adjusting phone profiles according to speed (see
Figure 6 in the previous subsection), the SpeedResponderAgent incorporates
the mechanisms to identify the movement type of its user®. In this example
the information about the current state was only used for internal application
purposes, but could equally be offered to other p-agents using a p-intent (similar
to the PhoneProfileAgent that offers its capabilities as p-intents). Beyond that,
the high-level description of the current state could be offered as an event that is
raised once the state changes (e.g. from DRIVING to WALKING). To offer those
events to applications that are building on the MOA development principles,
they can be exposed as events in the Android realm and caught by application
components that can benefit from this functionality using broadcast receivers.
This way MOA can deliver functionality reuse for legacy Android applications
which is useful for enriching raw sensor data with semantic information instead
of potentially having to reimplement this functionality repeatedly.

An example for this is the phone’s positioning information. Android data
received from the gyroscope can be used to determine the phone’s orientation.
However, this information is provided in the shape of rotation matrix values
which demand conceptual understanding even if only used for a small task,
such as determining whether the phone is lying, tilted to either side, or held
upright. py-agents can take over the task of converting this detailed information
into more coarse semantic categories by approximating the device orientation of
the device from the data, and offer this information on a pragmatic abstraction
level. Android intents containing this information, e.g. indicating the device as
upright (DEVICE_UPRIGHT), can be registered by broadcast receivers of any
Android application and thus increase the reuse of this functionality across any
number of applications running on the device. To mediate the registration of
such events (and to raise them as Android intents), MOA uses a specialized -
agent that handles the forwarding of generated events to the broadcast receiver
mechanism. Figure 8 visualizes the interaction schema to register and raise events
in both Android and in the p-agent realm.

Events (here the SimplePositioningEvent) are offered by the capability map-
per p-agent that directly interacts with a corresponding utility component coun-
terpart. A mediating agent, the Micro-to-AndroidEvent Agent, subscribes to the
event on the MOA side (Message 1 in the figure) and raises it in Android (Mes-
sages 2-4), so that it can be captured by any Android application component

3 In the given example the identification of movement types is parameterized by the
user. One could imagine other more sophisticated approaches, e.g. by classifying
sensor data.

Android ‘App 01’

Android ‘App 02'

Intent with
simplified phone

Intent with

positioninfo / Broadcast simplified phone /' Broadcast
— Receiver position info, Receiver
7~ 4

Android
Service

MicroAgent Interface Service

Android Interface Role]
13
s
= User Sound Positioning Location
%_ Interactor Agent Agent Agent
e RsquestUserlnput {SetSoundLevel | I'SubscribeSimple | SubscribeSpeed |
3 Requasyiempiok H IPosmonEvem H Event |
® ShowNotitsation e SubscribeLocation §
= _ - Proximity H
j/ Mms \‘ U —
\ Mapper) - -
i SendMmsintent | | SendSmsintent § Micro-to-Android
Event Agent
Legend
Sub-agent it
—_ relatior?ship TR Applicable intent Application components
MicroMessage with | ‘===~~~ b (u—ager.n platform)
e (u-agent) Intent l—— Ee_nt_j Subscribed event
_— (u-agent platform)

MicroMessage with
Event

Android Intent

‘Android
Activity

Registered Intent filter
(Android)

Fig. 8. p-agents as Event Sources

that is capable of handling this particular event. As a consequence, Android de-
velopers can use the information about the device positioning without a detailed
concern for the actual functionality involved with transforming sensor data to
semantically more expressive information. The developer only needs to know
the (Android) intent internals; he can ignore any p-agent implementation as-
pects. But as the generated intents are fully convertable and operate both in
the p-agent realm as well as in conjunction with legacy Android application
components, this functionality is accessible to both sides.

A future aspect of this functionality is to automate the usage from the An-
droid side, i.e. enabling the subscription to particular events transparently from
Android without relying on the mediating agent managing subscription and bro-
adcasting of events to Android.

3.4 Performance Evaluation

To quantify some benefits of the use of p-agents on Android, we developed
a benchmark measuring the interaction performance for both Android-based
services and a version realizing this functionality with p-agents. It simulates a
simple context-aware application, automatically responding to incoming SMS
text messages and is shown in Figure 9.

|- Service

p-agents on Android
Android scenario - 9 \ scenario
/ | N
‘ MicroAgentinterfaceService ‘
(AndroidInterfaceRole) | — __ —_— 1
2 N\ |
Response |
Manager 8
8 . 7 2/ 3 6 |
5| |6 / /4 s
Y » / 1 |
Name Priority Name Priority
(ResolveD (Resolve) ResPon(@ Resolver Resolver Responder
p-agent platform

—— =— Android Intent

Legend

MicroMessage with
(u-agent) Intent
MicroMessage with
(u-agent) Event

Android
Service

The numbers on arcs indicate
the order of message flow.

Fig. 9. Benchmark Scenario for Performance Comparison

An incoming text message is forwarded to a responding entity (Response-
Manager) which coordinates the resolution of the sender’s name (via NameRe-
solver), the identification of the priority (PriorityResolver) of the sender, and
finally responds to this message (Responder). The functionality is standardized,
and in each case a response message is generated to measure the pure inte-
raction performance for both benchmark implementation variants. This scenario
has been executed for increasing numbers of rounds to show the scalability of
MOA. Each configuration has been executed ten times, with an initial warm-
up run of 5 rounds. Table 3 shows the average durations along with standard
deviation and relative performance factor of Android services in comparison to
p-agents.* Figure 10 shows the graph of those results.

Table 3. Selected Benchmark Results per Scenario Rounds

Rounds| MOA (ms) o| native Android (ms) o| Factor®
5 231 67.62 639 43.57 2.77

10 390 88.93 950 61.07 2.44

25 850 65.12 1875 30.57 2.21

50 1637| 142.90 3466 132.30 2.12

100 3027 68.95 6789 106.77 2.24
250 7387 117.64 16948| 735.71 2.29
500 14407 256.74 33777 350.04 2.34
1000 28404| 219.85 70088| 379.47 2.47
2500 77451 984.75 201685| 1493.96 2.60

Relative performance of Android intents to p-agents.

4 The benchmark has been run on a HTC Magic smartphone running Android 2.2.1.

In both scenarios all entities run in the same process, avoiding computationally

expensive Inter-Process Communication (IPC).

200 /
150
s
/ 7
50 ,

Runtimein seconds
—
=
(=]

7
- - - /
0 T === it T 1
5 50 500 5000
Benchmark rounds
= = MOAintents =——Androidintents

Fig. 10. Benchmark Results Graph

Despite the additional two Android intents necessary to realize the MOA
variant of the scenario, it still significantly outperforms the purely Android-
based interaction. The performance difference is surprising, but we attribute it to
the fact that Android’s application components are more featureful (potentially
allowing IPC, providing a more comprehensive life cycle) and thus demand a
heavier implementation (and processing) than the p-agents. y-agents are directly
built on the provided libraries but themselves do not use any of the Android
application components for their internals; their purpose is to allow efficient
communication between numerous less featureful entities.

Beyond the qualitative argument for modeling benefits from an explicit agent
organisation, this gives a clear indication that a strong decomposition into pu-
agents can be achieved without performance loss, and might — depending on
the number and degree of decomposition into multiple p-agents — even result in
faster applications.

4 Related Work

This work is not the first targeting the comparatively young Android platform
but takes a different approach than existing efforts to run agent-based systems
on this platform.

The mobile version of the popular agent platform JADE [19], JADE-LEAP, is
available in an Android version, JADE ANDROID [11]. It enables the integration
of an Android-based software agent into the comprehensive and mature JADE

infrastructure. JADE organises individual agents by the containers they are as-
sociated with. For distributed use JADE ANDROID relies on a main container
provided by the connected full JADE version. The number of agents running in
one JADE ANDROID instance is currently restricted to one. So agent develop-
ment with JADE ANDROID focuses on the one-to-one assignment of application
and user.

Another approach is presented by Agiiero et al. [1], who use Android as a
basis to implement their Agent Platform Independent Model (APIM), which
is derived from the analysis of commonalities in various AOSE methodologies.
Their implementation is directly based on the full Android infrastructure (e.g. ex-
tension of Services as Agents). In contrast to the p-agent concept argued here,
the APIM puts the focus on agent internals. Organisational modeling is not of
primary concern.

JaCa-Android [18] implements the Agents and Artifacts model [17] on An-
droid. The Agents and Artifact model puts forth the notion of agents and ar-
tifacts as modeling entities to describe application functionality. For the imple-
mentation of agent internals, JaCa-Android relies on the AgentSpeak interpreter
Jason [3]. Organisational aspects are modelled using the notion of workspaces
to structure an agent’s environment. Agents can participate and collaborate in
various workspaces in a distributed manner. Android capabilities, such as sensor
information or messages (e.g. SMS message, GPS coordinates) are modelled as
artifacts. Artifacts expose specific attributes and operations to agents that are
operating on those artifacts across different workspaces.

A last approach — seemingly similar to our concept — is Jadex micro agents [4].
Originally, Jadex [16] was developed as a BDI layer working on top of the JADE
platform. With the recent version 2, this dependency was given up, making Jadex
an agent platform on its own. Along with this, the notion of micro agents was
introduced. In Jadex they act as a counterpart to conventional Jadex agents
and consequently focus on performance, allow the handling of their own lifecycle
and cater for the execution of primitive tasks. Jadex micro agents avoid the
representation of organisational concepts such as roles or groups; introducing
any organsational structure is left to the developer. As a consequence Jadex
micro agents have a very small memory footprint. Interaction can be modelled
using a generic message type that allows unconstrained communication among
different micro agents.

In contrast to existing efforts, the pu-agent approach advocated in this paper
offers an agent-based organisational extension to Android’s infrastructure which
both allows modelling in an agent-based manner, while also increasing the reuse
of application functionality across different applications and platforms. The goal
of our implementation is not only to run agents on Android but also to provide
an interface for the seamless interoperation of agents with legacy application
components on Android devices. Given that the specific application landscape
on Android device instances can vary significantly, the potential of u-agents to
formulate Android intents in a proactive manner allows them to treat Android
itself as an open system.

Table 4. Overview on Existing Android-based Multi-agent Platforms

Agent interoperable dz're?t intemcr?z’on
Approach Metamodel Architecture desktop version with Android
components
Agent Platform
Agiiero et al. | Independent | intelligent agents® no no
Model (APIM)
JaCa- Agents & . .
Android | Artifacts model intelligent agents noe noe
JADE FIPA Abstract | . .
Android Architecture intelligent agents yes no
Jadex Micro .
Agents - reactive agents yes no
MOA u? Model %.chhitecture— yes yes
independent

The metamodel it not restricted to a particular internal architecture but the im-
plementation is realized with Jason.

Table 4 summarizes this short survey on the different efforts to run agents
on Android based on the available documentation.

5 Future Development of MOA

Future research will include the extension of the current system towards a more
comprehensive agent-based ad hoc middleware, integrating a wider range of mo-
bile system services and sensing, together with Internet features (e.g. web ser-
vices). Part of this work is also to address the potentially harmful bottleneck
of MOA when interacting with numerous legacy application components. The
development of applications using this blended approach further needs to be har-
monized with existing AOSE methodologies. p-agents are mediators for access
to low-level functionality on one side, and intelligent agent notions on the other.
Beyond this general strengthening and enhancing of the MOA platform, there
will be a further, significant development in connection with the integration of
MOA with Web Intents [14].

Web Intents are a new client-side browser equivalent to Android intents that
support the client-side discovery of services for particular tasks, such as playing
music or sharing files. Their functionality includes a subset of the functionality
offered by Android intents. To invoke Web Intents it is necessary to provide an
action which is a verb describing the desired action, such as VIEW or PICK.
Optional fields include type, which acts as a filter on data types. A last optional
parameter is the specification of an URI pointing to an action target.

As a result of the runtime binding of web intents, the integration between
different applications or services is delegated to the end user rather than the
developer. The user registers client-side services/applications that satisfy specific
requests.

The entire concept is similar to the runtime binding realized in MOA. As
a consequence, and supported by the more primitive resolution mechanisms of
web intents than in Android, web intents provide a useful mediator to integrate
phone functionality with the web browser, both for desktop machines and mo-
bile devices. In this context MOA can act as an infrastructural mechanism to
mediate network-level aspects, but also enrich the available functionality set for
browsers. Given the composition aspects of p-agents, MOA can serve as a ba-
sis to provide more complex smart services, e.g. by adding location-awareness,
accessing personalized data, etc. On the other hand, MOA can take over some
of the actual binding functionality which reduces the browser-centrism of this
approach and — with its different degrees of functionality decomposition — allows
a more fine-grained functionality resolution.

With the availability for a wide range of web browsers and the advent of
Google’s ChromeOS [9], we believe that web intents will rapidly gain increased
attention and put a stronger emphasis on ad-hoc composition of functionality to
improve the customization of application environments.

6 Conclusion

The mobile application development platform Android offers comprehensive ca-
pabilities for a wide range of smart applications and an infrastructure that shows
characteristics related to multi-agent systems. Its applications are composed
using loosely coupled asynchronously communicating application components.

However, the degree of loose coupling in Android shows limitations and does
not offer an organisational scheme for more fine-grained functionality decom-
position patterns. We have proposed here the integration of efficiency-oriented
p-agents with Android application components. This enables the comprehensive
maintenance of developed functionality and makes it available for reuse across
different applications at an abstraction level convenient for the developer. This
offers a low-threshold approach to compose required functionality in a consis-
tently agent-oriented manner across a dynamically changing device landscape.

Applications backed with p-agents can easily coexist with legacy applications;
so developers should consider both Android and p-agent concepts when model-
ling applications. To separate concerns when using both conceptual architectu-
res, developers can, if they so choose, use p-agents merely as event sources or for
primitive functionality while building the actual application functionality using
legacy application components. Beyond this MOA’s unique direct interaction
with Android application components using Android intents — in conjunction
with the varying and changing application landscape on different devices — al-
lows p-agents to act in open systems.

To provide a strong degree of functionality decomposition — as a prerequisite
for the eventual reuse — we deem performance a critical aspect. A benchmark tes-
ting the interaction performance of both Android intents and u-agent interaction
mechanism has demonstrated the favorable performance of p-agent intents.

The increasing provision of technology supporting runtime binding of appli-
cation functionality supports the conceptual approach taken with MOA. In this
context, the consideration of Web Intents will be of particular interest for our
next iteration.

Overall the unique approach to interface agent-based modeling principles
with legacy technology described here is an example of how agent-oriented soft-
ware engineering principles can facilitate application development in a practical
and cross-paradigmatic manner.

References

1. J. Agiiero, M. Rebollo, C. Carrascosa, and V. Julidn. Does Android Dream with
Intelligent Agents? In J. Corchado, S. Rodriguez, J. Llinas, and J. Molina, editors,
International Symposium on Distributed Computing and Artificial Intelligence 2008
(DCAI 2008), volume 50 of Advances in Soft Computing, pages 194-204. Springer
Berlin / Heidelberg, 2009.

2. K. Arnold and J. Gosling. The Java Programming Language. The Java Series.
Addison-Wesley, Reading, MA, second edition, 1998.

3. R. Bordini, J. Hiibner, and M. Wooldridge. Programming Multi-Agent Systems in
AgentSpeak using Jason. Wiley, 2007.

4. L. Braubach and A. Pokahr. Micro User Guide. http://jadex-

agents.informatik.uni-hamburg.de/xwiki/bin/view /Micro+User+Guide/01+Intro-

duction. Accessed on: 15th August 2011.

D. Dennett. The Intentional Stance. MIT Press, Cambridge, Massachusetts, 1987.

6. Foundation for Intelligent Physical Agents. FIPA Specifications.
http://www fipa.org/specifications/index.html. Accessed on: 15th August
2011.

7. C. Frantz. Micro-agent platform u?. http://www.micro-agents.net. Accessed on:

15th August 2011.

Google. Android. http://www.android.com/. Accessed on: 25th January 2011.

9. Google. Chromium OS. http://www.chromium.org/chromium-os. Accessed on:
15th August 2011.

10. Google. What is Android? http://developer.android.com/guide/basics/what-is-
android.html. Accessed on: 15th August 2011.

11. D. Gotta, T. Trucco, M. Ughetti, S. Semeria, C. Cuce, and A. M. Por-
cino. JADE Android Add-on Guide. http://jade.tilab.com/doc/tutorials/JADE
_ANDROID_Guide.pdf. Accessed on: 15th August 2011.

12. R. Hickey. Clojure. http://clojure.org/. Accessed on: 15th August 2011.

13. N. R. Jennings and M. Wooldridge. Agent-Oriented Software Engineering. Artifi-
ctal Intelligence, 117:277-296, 2000.

14. P. Kinlan. Web Intents. http://webintents.org/. Accessed on: 15th August 2011.

15. M. Nowostawski, M. Purvis, and S. Cranefield. KEA - Multi-Level Agent Architec-
ture. In Proceedings of the Second International Workshop of Central and Eastern
Europe on Multi-Agent Systems (CEEMAS 2001), pages 355-362. Department of
Computer Science, University of Mining and Metallurgy, Krakow, Poland, 2001.

16. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning engine. In
G. Weiss, R. Bordini, M. Dastani, J. Dix, and A. F. Seghrouchni, editors, Multi-
Agent Programming, volume 15 of Multiagent Systems, Artificial Societies, And
Simulated Organizations, pages 149-174. Springer US, 2005.

ot

®

17.

18.

19.

A. Ricci, M. Viroli, and A. Omicini. Give agents their artifacts: the A& A approach
for engineering working environments in MAS. In E. H. Durfee, M. Yokoo, M. N.
Huhns, and O. Shehory, editors, AAMAS, page 150. IFAAMAS, 2007.

A. Santi, G. Marco, and A. Ricci. JaCa-Android: An Agent-based Platform for
Building Smart Mobile Applications. In In Proceedings of LAnguages, methodolo-
gies and Development tools for multi-agent systemS (LADS-2010), 2010.

Telecom Italia. JADE - Java Agent DEvelopment Framework.
http://jade.tilab.com, October 2011. Accessed on: 15th August 2011.

