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Abstract. To understand the operation of the informal social sphere in human
or artificial societies, we need be able to identify their existing behavioural con-
ventions (institutions). This includes the contextualisation of seemingly objective
facts with subjective assessments, especially when attempting to capture their
meaning in the context of the analysed society. An example for this is numeric
information that abstractly expresses attributes such as wealth, but only gains
meaning in its societal context. In this work we present a conceptual approach that
combines clustering techniques and Interval Type-2 Fuzzy Sets to extract struc-
tural information from aggregated subjective micro-level observations. A central
objective, beyond the aggregation of information, is to facilitate the analysis on
multiple levels of social organisation. We introduce the proposed mechanism and
discuss its application potential.

1 Introduction

The seamless interaction of software agents within open environments (i.e. in envi-
ronments in which actors can join and leave over time) requires the ability to observe
and identify behavioural patterns in order to adapt and interpret behaviours that are un-
known (i.e. have not been formally encoded at design time) or can change over time. In
addition to identifying complex social behaviours, such as composite actions and social
interaction patterns, both of which are fundamental characteristics of institutions [12],
individuals require the ability to infer information about the social structure of the ob-
served social environment, such as relevant demographic information.

In this work we propose a generic process that allows the generalisation of social
structure from observational information. We achieve this by aggregating subjectively
categorised micro-level observations on arbitrary level of social organisation, and use
Interval Type-2 Fuzzy Sets (IT2FS) to identify patterns of category allocations across
ordinally-scaled dimensions.

In Section 2 we outline the motivation for the proposed approach, briefly identify
related research fields and existing work. This is followed by a brief introduction to



IT2FS in Section 3. In Section 4 we introduce the essential contribution that consists
of a staged use of clustering techniques in addition to IT2FS. Finally, in Section 5, we
summarise and discuss application areas for our contribution, but also identify further
potential for future work.

2 Motivation and Related Work

When humans interact in new environments, they rely on previous experience to guide
their actions. However, to capture the social meaning of actions or interaction patterns
(and thus inform their action choice appropriately), they also develop an understanding
of the social roles, order and dynamics, in short: the social structure of the social en-
vironment they are acting in. Learning about social structure implies a generalisation
process in order to make the acquired knowledge transferable to unknown situations
and environments. Inferring structural information from observation involves several
challenges that apply to humans as much as to artificial entities:

– Bounded rationality [15] – Individuals have a limited ability to keep track of the
characteristics of all observed individuals, an aspect that challenges the inference
of social structure in open systems.

– Incomplete information – Specific social attributes, such as age, may not be acces-
sible for all observed individuals.

– Locality of observations – Individuals do not have a global view, but are constrained
to the observation of their specific social environment.

To deal with those challenges, humans rely on abstraction mechanisms that per-
mit the categorisation of observations (e.g. aggregating individual observations into
age groups), while operating subconsciously without relying on the individual’s ex-
plicit mental attention. Following this rationale, individuals continuously invoke some
notion of stereotyping or labelling based on ‘implicit social cognition’ [6] that aims
at categorising observation traces by their structural components. The intrinsic opera-
tion further includes the consideration of individuals’ biases (e.g. attitudes, self-esteem,
previous experience) and situational involvement. Those priming influences shape the
interpretation and internalisation of observation traces – making it both product of a sit-
uational assessment and subjective influence factor for future assessments at the same
time. As a response to personal experiences as well as objectives, individuals can in-
voke subjective social comparison processes [3] that reflect the relative position or role
in a social environment (e.g. allocating oneself in a specific age group), as opposed to
capturing a comprehensive objectified picture.

While computational capabilities seemingly permit artificial agents to overcome
the challenge of bounded rationality, retaining full information permanently is ineffi-
cient, both in terms memory consumption and computational efficiency, especially if
attributes change, have only temporary relevance, or require frequent computing. Simi-
lar to humans, artificial entities face the challenges of operating on incomplete and local
information when attempting to infer social structure.

In this work we propose an initial approach that models stereotyping processes in a
generic fashion using Fuzzy Sets [16], or, more specifically, Interval Type-2 Fuzzy Sets



(IT2FS) [17], as the underlying technique. Fuzzy sets represent a natural conceptual
fit for the problem of quantifying ordinal categories for given dimensions (e.g. Age:
‘young’, ‘middle-aged’, ‘old’), and are able to capture the blurry boundaries between
those categories. Moreover, beyond serving as a compatible conceptual mapping for
specific category definitions, fuzzy sets can be comprised of multiple individual ob-
servations, making them a tool for the analysis of observations on arbitrary levels of
aggregation, thus facilitating the identification of social structures on various levels of
social organisation, such as micro, meso and macro level. As such, fuzzy sets comple-
ment imperfect subjective categorisation processes with analytical facilities to allow the
objective characterisation of their aggregated outcomes.

The proposed approach sits at the intersection of norm synthesis, a subfield of nor-
mative multi-agent systems, and the social-scientific application of fuzzy sets. Work
on norm synthesis include centralised, hybrid, and decentralised approaches. Morales
et al. [11] propose a centralised norm synthesiser that monitors agents’ behaviours in
a traffic scenario and infers and imposes rules at runtime. An alternative hybrid ap-
proach by Riveret et al. [14] marries bottom-up norm inference and top-down enforce-
ment in which individual agents play stochastic games and individually nominate a
preferred normative strategy based on observed strategy outcomes, which are then put
forth as motions, voted on and implemented based on a collective social choice mech-
anism. Frantz et al. [5] use a decentralised approach in which agents infer generalise
behavioural patterns and structural information based on observation and present those
in human-readable form using a generic norm representation.

We will highlight related work in the area of fuzzy sets after introducing the under-
lying concept in more detail in the following Section 3.

3 Interval Type-2 Fuzzy Sets

An essential novel aspect in this work is the use of Interval Type-2 Fuzzy Sets (IT2FS)
to facilitate the generalisation and synthesis of non-categorical attributes. Zadeh [16] in-
troduced fuzzy sets as a mechanism to represent uncertain information, the complexity
of which he deemed to be in inherent conflict with precision. Instead of unambiguously
classifying information as members of well-defined (crisp) sets (as exemplified in Fig-
ure 1a), fuzzy sets remove the assumption of unambiguous set associations and instead
emphasise a continuous degree of membership (with boundaries 0 and 1), reflecting the
certainty with which a value is a member of the corresponding fuzzy set (as shown in
Figure 1b). This flexibility qualifies fuzzy sets for the use in a wide range of application
domains involving classification problems that are characterised by the complexity of
input data. Examples of those include micro-controllers [9] and image processing [1],
but also social-scientific aspects, such as modelling personality traits [13] or establish-
ing a fuzzy measure of social relationships [7].

Referring to the examples shown in Figure 1, crisp sets (Figure 1a) are characterised
by their unambiguous association of input values (here: 3 of the dimension x) with a
given set (here: C), with a degree of membership (µC(3)) of 1. For the (Type-1) Fuzzy
Set K (as shown in Figure 1b) the degree of membership (µK(3)) is 0.8.



(a) Crisp Set (b) Type-1 Fuzzy Set (c) Type-2 Fuzzy Set

Fig. 1: Examples for Crisp, Type-1, and Type-2 Fuzzy Sets

However, an essential problem associated with Type-1 Fuzzy Sets (T1FS) is the
conception of uncertainty as a discrete value, i.e. the representation assumes ‘certainty
about the uncertainty’, here expressed as the degree of membership. A possible solu-
tion to this problem is to represent the degree of membership as a fuzzy value itself,
making it a recursive problem reflected in Type-n Fuzzy Sets [17] (with n reflecting the
order). In this work we concentrate on an interval-based representation of fuzzy sets,
specifically Interval Type-2 Fuzzy Sets. In this concept second-order uncertainty is ex-
pressed as a Footprint of Uncertainty (FOU) that is delimited by an upper membership
function (UMF) and lower membership function (LMF). Consequently, the degree of
membership for a specific input value is represented as an interval itself. For the exem-
plified Type-2 Fuzzy Set K̃ in Figure 1c the degree of membership for the input value 3
is µK̃(3) = [0.3, 0.8], determined by the input value’s intersections with UMF (K) and
LMF (K).

More than reflecting a philosophically more accurate representation of uncertainty,
the use of IT2FS lends itself well for the representation of systems in which the global
state is an emergent property of its constituents’ interactions. This enables the inspec-
tion on multiple levels of analysis, with the emerging FOU being an essential construct
to quantify aspects such as social coherence – an aspect that we exploit in this work.
To our knowledge IT2FS have found limited application for the purpose of social mod-
elling, with the exception being their use to quantify the concept of normative align-
ment [4].

4 Generalising Social Structure

To showcase the use of IT2FS to infer information about social characteristics, we in-
troduce a set of assumptions about the structure of observable information. We assume
that each individual carries attributes or markers of numerical (or at least ordinally-
scaled) nature, such as their specific age. The corresponding attribute (e.g. ‘age’) must
furthermore apply to all individuals, i.e. each individual must have an age. Individuals
must be able to perceive such marker instance values, either based on public display or
some form of inference on the part of the observing individual (e.g. gauging another in-
dividual’s age relative to oneself). Individuals reduce cognitive load (see Section 2) by
allocating their observations in ordinally-scaled categories of given dimensions (such
as the categories ‘low’, ‘medium’, and ‘high’ for the dimension ‘wealth’). These cat-
egories are then expressed as value intervals. Following the motivation of this work,



intervals are shaped by the individuals’ experiences, with interval centre values bearing
higher certainty values than boundary values.4 However, the proposed generalisation
approach is agnostic about the origin of those value intervals.

The devised process exploits the strength of IT2FS to systematically combine in-
dividual varying value ranges on arbitrary levels of aggregation. However, to apply
IT2FS generation to social systems, we need to take the potential conflicting analytical
objectives of both into account. The IT2FS generation process (which we explore in
more detail at a later stage) aims to produce a coherent single membership function that
describes a category of interest while attempting to produce a minimal FOU (i.e. min-
imising uncertainty about the fuzzy set boundaries) by applying statistical corrections
in order to isolate (presumed) irrelevant data or outliers as shown in Figure 2 (individual
input intervals are represented in grey colour; the bold red trace reflects the UMF; the
green trace represents the LMF). However, social systems exhibit, if not promote, broad
stratification or even polarisation of observed characteristics (as seen for the clustered
intervals on the far left in Figure 2) such as individual or social markers, attitudes,
and opinions. Coercing those into a uniform macro-level construct in order to increase
coherence (by filtering outliers, etc.) would prevent the comprehensive representation
of the existing social landscape and limits explorative analysis, and thus rendering the
application of the otherwise appropriate mechanism questionable.

Fig. 2: Exemplified Operation of MF Generation on widely-spread Input Intervals

We thus devise preliminary steps that adapt the use of fuzzy sets for the purpose
of social systems by preempting MF generation with steps for both supervised and
unsupervised identification of relevant social clusters. The complete process involves

– the collection of individuals’ interpretations of categories for given dimensions,
i.e. the numeric intervals describing specific categories (e.g. low, medium, high)
within given dimensions (e.g. wealth),

– the identification of interval clusters for given categories (intra-category clustering),

4 For example, ‘low wealth’ could comprise the interval 0 to 50 ([0, 50]), medium wealth [50,
100], and anything above 100 considered as ‘high wealth’. The membership of boundary val-
ues (e.g. 50) with specific sets is of lower certainty than interval centres values (e.g. 75).



– the clustering of interval clusters across all categories within a given dimension
(inter-category clustering), and finally,

– the generation of the IT2FS.

We conceive two mechanisms to group this functionality, with the first three steps
being managed by the Clustering Module, and the remaining ones by the IT2FS Module.

Figure 35 schematically visualises the overall process. The process is initiated by the
injection of collected action observations, and ultimately produces IT2FS membership
functions, allowing its interfacing with agent architectures that produce the inputs, and
coordination mechanisms that consume the generated membership functions (e.g. to
model collective decision-making).

Fig. 3: Process Overview

4.1 Collecting Intervals

As an initial step, category intervals are collected by the interval preprocessor. Assum-
ing the potential operation in open systems, associated tasks involve the sanitisation of
input by testing for invalid intervals (such as inverted interval boundaries, infinite or null
values). Sanitised intervals are organised by dimension and corresponding categories.

4.2 Clustering Intervals

Clustering (Intra-category Clustering) As exemplified in Figure 2, the identification of
a unique set of intervals based on conventional statistical operations cannot accommo-
date widely-spread input intervals. Instead, we apply density-based clustering in order
to identify grouped intervals that may be indicative for a shared conceptual understand-
ing of a given term, i.e. the varying conceptions of ‘low wealth’ between different indi-
viduals (intra-category clustering). To allow the unsupervised identification of clusters
we rely on the DBSCAN [2] algorithm that operates on the principle of identifying
core points that have at least a specified number of neighbouring points (minPts) within
a maximum permissible distance ε . For clustering operations explored in the experi-
mental evaluation we consider three as the minimum number of members (minPts) to

5 Grouped boxes indicate system components along with elementary processing steps, whereas
individual boxes with italicised labels signify processing artefacts such as inputs (e.g. intervals)
and outputs (e.g. membership functions). Dashed boxes indicate the optional nature of the
operation (e.g. statistical correction).



constitute a cluster. As distance metrics for intervals we use specified minimal range
intersections of intervals, with 0 indicating complete overlap of interval ranges (i.e. ei-
ther identical interval ranges or one range encompassing the other), and 1 indicating no
interval overlap. A distance or ε value of 0.3 would thus imply a minimum proportional
overlap of 0.7 to consider two intervals clustered.

Meta-Clustering (Inter-category Clustering) The clustering of intervals occurs inde-
pendently for individual categories in order to characterise varying interpretations for
specific categories (e.g. ‘low wealth’). However, the individual categories (e.g. ‘low’,
‘medium’, ‘high’) of a given dimension (e.g. ‘wealth’) do not exist in isolation if we
want to characterise social clusters based on their conceptual understanding. We thus
perform a meta-clustering operation to integrate the understanding across all category
clusters as indicated in Figure 4. Exemplified interval clusters are identified by colour;
the horizontal lines highlight the cross-category relationships.

Fig. 4: Meta-Clustering across Categories

The meta-clustering step is based on the assumption that all individuals hold con-
ceptions across all categories of a given domain. However, that does not imply that indi-
viduals with similar conceptions within a given category need to maintain those across
all categories of a given dimension. To facilitate the identification of inter-category
clusters, each interval iv maintains a reference to the originating individual ivorig. In an
effort to reduce the number of meta clusters (for larger number of clusters), we devise
an optional algorithm. As a first step, all possible cluster combinations across all cate-
gories are identified. Following this the proportional intersection of individuals linked
to the clustered intervals (relative to the mean size of combined clusters) is determined
(with {iv, . . .} as individual category clusters):

xcombination =
count(∩ ({ivorig, . . .}1, . . . , {ivorig, . . .}k))

µ(count({iv, . . .}1), . . . , count({iv, . . .}k))
(1)

The combination with the largest proportional intersection for each cluster is the
most representative meta cluster for a given individual cluster.

4.3 Membership Function Generation

The identified meta clusters provide an overview of the presumed social structure based
on the differentiated generalised interpretation of conceptual dimensions, but do not



make the individual clusters analytically accessible. Here we invoke Interval Type-2
Fuzzy Sets as introduced in Section 3. The essential purpose of IT2FS is to transform
the clustered intervals into a uniform representation that generalises the certainty with
which a given input value for a dimension is associated with a category.

Levels of Analysis The process of generalising IT2FS is challenged by the trade-off
between representativeness (quantity of represented intervals) for the entire category –
represented by the UMF – and the IT2FS’s quality, i.e. its ability to extract a shared
understanding of the proximate intervals by introducing some level of certainty – rep-
resented by a small FOU (i.e. the difference between UMF and LMF). The quantitative
notion of Representativeness is thus defined as

Representativeness :=
count(totalIntervals) – count(excludedIntervals)

count(totalIntervals)
(2)

The qualitative notion of Alignment is expressed as the relative difference in area under
the LMF relative to the area captured by the UMF (with a value of 1, i.e. identical LMF
and UMF, representing highest possible alignment):

Alignment :=
LMF
UMF

(3)

From a sociological perspective this corresponds to the differentiation into macro- and
meso-level analysis (with individual intervals reflecting the micro level). Macro-level
analysis thus considers all input intervals for a given category, whereas meso-level anal-
ysis concentrates on individual clusters. The selection of meso-level clusters depends
on the analytical objectives (e.g. the focus on majority or minority groups), such as the
selection of largest, smallest, most central or most extremal clusters.

Statistical Corrections In addition to the coarse-grained trade-off based on analytical
levels, individual clusters can be refined by statistical corrections inspired by Liu and
Mendel [8] to remove noise, emphasise central cluster regions, and enforce at least a
minimal aligned understanding. Corresponding non-parametric corrections include

– the filtering of intervals that lie outside a given factor of the interquartile ranges, (to
emphasise central intervals), and

– the filtering of non-overlapping intervals (to ensure the establishment of a LMF).

Generating Membership Functions At this stage the intervals have been selected based
on analytical strategy and potential further statistical corrections. As indicated at the
beginning of this section, we assume that the individual intervals themselves express
conceptual understanding of varying certainty, with (full) certainty at interval centres
and (in our case linearly) decreasing certainty towards the interval boundaries (e.g. be-
cause of overlapping interval regions or dynamically changing boundary values).

Based on the input intervals, the UMF µS(x) (for an IT2FS S) is determined as the
highest degree of membership for each input x, and LMF µS(x) as lowest degree of
membership for each input x (see Section 3). The corresponding FOU is then deter-
mined as the area between UMF and LMF [10], or union of differences between UMF
and LMF membership degrees across all values in X , expressed as:



FOU(S) =
⋃
x∈X

[µS(x), µS(x)] (4)

Figure 5 visualises the effects of analysis levels on the generated membership func-
tion, with macro-level selection shown in Figure 5a, statistical adjustments to macro-
level selection shown in Figure 5b (exclusion of intervals outside 1.5 * interquartile
range), and the selection of a specific cluster for MF generation in Figure 5c.

(a) Macro-Level Analysis (b) Statistical Adjustments (c) Meso-Level Analysis

Fig. 5: Configuring IT2FS Generation

The established IT2FSs provide an integrated representation of the chosen inter-
vals with respect to the previously introduced metrics, and furthermore generalise the
shared understanding of a given term. This allows the invocation with analytical tools
to determine an associated term for a given input across the considered input intervals.

5 Summary, Discussion & Outlook
In this work we have outlined an approach to extract general information about so-
cial structures from micro-level observations. This includes the initial identification of
category clusters and the subsequent generation of IT2FS membership functions. The
presented approach is generic and makes few assumptions about the underlying individ-
uals, which include their ability to represent observations in a uniform structural rep-
resentation and the ability to subjectively categorise numeric variables. It lends itself
well for autonomous unsupervised operation (only required parameters: granularity of
clustering (see Subsection 4.2); choice of desired analysis level and eventual statistical
corrections (see Subsection 4.3)). Alternatively, as done in our example, the mechanism
can be applied to inspect emerging social clusters and inform a supervised analysis by
modifying the configuration (e.g. analysis level) at runtime.

Currently, the proposed approach operates non-intrusively and is only used for an-
alytical purposes. Individual agents neither require awareness nor are they directly af-
fected by their operation. However, looking at future work, the use of fuzzy sets is not
constrained to analytical purposes. IT2FS provide a helpful metaphor to instil a compu-
tationally accessible mechanism that allows individuals to compare and evaluate their
own and others’ conceptual understandings. Beyond this, IT2FS can be used to inject
notions of computational social choice (such as majority-based decision-making), clos-
ing the feedback loop between micro-level entities and emergent meso- or macro-level
phenomena.
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