Dynamic Ad Hoc Coordination of Distributed
Tasks using Micro-agents

Christopher Frantz, Mariusz Nowostawski, Martin K. Purvis

Department of Information Science, University of Otago, New Zealand

Abstract. The notion of u-agents to develop complex software applica-
tions has been under active research interest for some time. Through
improved organisational modelling p-agents provide stronger support
for decomposition and abstraction in decentralized applications. With
the advent of the mobile application platform Android — which exhibits
strong analogies to multi-agent system principles — we strongly believe
that u-agent-based modelling has become an increasingly attractive al-
ternative. It can combine decentralized application development with the
wide-ranging set of sensors and communication channels to foster both
context-sensitivity and flexibility of applications. By integrating Android
with the p-agent concept mobile applications can put stronger empha-
sis on coordination of task-oriented agent organisations. As an example
how this can facilitate the development of distributed applications, we
describe an application for the field of "Unconferences” to dynamically
schedule informal talks in an ad hoc manner. We model the central as-
pects of the application and show the advantages of our u-agent-based
approach. Finally, we contrast our approach to existing work in this field
and suggest the consideration of p-agents as an alternative to conventi-
onal object-oriented software development.

Keywords: Multi-agent Systems, Micro-agents, p-agents, Unconferen-
ces, Android, Agent-based Modelling, Distributed Information Systems

1 Introduction

The increasing penetration of smartphones into consumer markets has made ubi-
quitous computing a reality. Beyond the traditional communication role, smartp-
hone capabilities are increasingly used for context-sensitive coordination of tasks
and location-based services, supported by a number of sensors (e.g. GPS, acce-
lerometer, gyroscope) and a wide range of communication channels (e.g. NFC,
WiFi, Bluetooth).

As a result, many of the applications running on those devices are inherently
complex. They must integrate multiple sensors and communication channels with
different characteristics and behaviour (e.g. blocking/non-blocking communica-
tion) and often rely on concurrent and asynchronous communication patterns
within the application.

The modern mobile application platform Android, reflects this understanding
and allows flexible modelling of mobile applications from application compo-
nents, structuring applications from asynchronously interacting front-end, back-
end, content-related and context-related elements. Although the Android archi-
tecture simplifies complex application development, the application components
do not provide enough flexibility to model more fine-grained functionality beyond
the high-level application layout enforced by the Android architecture.

To improve the modelling capabilities and also allow a flexible concurrent la-
yout of applications, we present our integrated approach of agent-based techno-
logy and the Android platform, which we call *u-agents on Android’ (MOA). We
see u-agents as a lightweight approach to model concurrent and potentially dis-
tributed applications from autonomous entities. The micro-agent concepts that
we introduce also provide a comprehensive organisational meta-model to allow
the strong level of decomposition that Android application components cannot
offer “out of the box”.

We begin by introducing the notion of application components in Android
and suggest some improvements to establish the development of a more flexible
Android application framework. Following this, we introduce the concept of -
agents and elaborate some of their key modelling features. After this, we describe
how both technologies have been integrated as MOA.

To clarify the potential of our approach for dynamic information systems, we
describe an application which benefits from those capabilities, and demonstrates
well how to address coordination concerns for ad hoc talks at “Unconferen-
ces” [10]. Unconferences represents a comparatively young phenomenon and rely
on a strong degree of decentralized organisation.

2 Android and p-agents

2.1 Android application components

The application platform Android [4], developed by the Open Handset Alliance
under the lead of Google, is a Linux-based software stack providing a uniform
approach towards writing smartphone applications. The Android application
design principles make even elementary applications and their components in-
terchangeable by the phone user. Android’s software stack includes the Dalvik
virtual runtime environment, which allows for application development using the
widely known Java syntax. On higher levels of the software stack, capabilities are
organized in a task-oriented manner using the notion of managers. For example
the LocationManager provides support for location awareness and location-based
event handling.

To model applications, Android supports the notion of application compo-
nents, which can be used to model a basic template of an application by its
functional characteristics. Android comes with four different application compo-
nent types: Activities run in the foreground, directly interact with the user, and
are of rather short-running nature. Services run in the background, are long-
running and often maintain the core application state, as their functionality is

least likely to be interrupted. Broadcast receivers represent an event subscription
mechanism used both for system events (such as receiving text messages), and
Content providers act as an abstraction layer for any persistent data source.

All these components (apart from Content providers) are linked by so-called
Android intents, which represent a message structure encapsulating abstract re-
quest specification plus extra key-value pairs (extras). Intents are asynchronously
executed and allow dynamic binding of application components at runtime. As
a consequence, applications are constituted by the combination of application
components and the intents registered with particular components, which are
documented as an application manifest. The application manifest is a XML file
describing application components and permissions, among other project-specific
details.

2.2 Modelling constraints of Android application components

Although Android provides a number of building blocks for modular application
composition, we feel that the framework still constrains application develop-
ment, in particular, the structural decomposition: Android applications often
result in a rather static structure consisting of the four provided coarse appli-
cation component types. From a modelling perspective, the provided modelling
artefacts are considerably limited and only allow simple application templates,
structuring applications by foreground and background activity, as well as con-
text (e.g. events) and content storage. Applications thus show uniform structure
and are typically modelled using conventional object-oriented programming.

This is not a fundamental flaw, but Android does not take the full step to ease
the task-oriented modelling aspects such as a more fine-grained decomposition of
functionality into more primitive and specialized application components while
dealing with low-level aspects such as concurrency. To provide further decom-
position of application functionality in Android, application developers need to
fall back to Object-orientation. Along with the weaker abstractions developers
also need to deal with aspects such as thread handling and loose the built-in
capability for asynchronous message passing on this level.

In order to provide a better and also more uniform modelling support, we
provide more fine-grained application-oriented modelling mechanisms based on
software agents [11]. This way, application architects and developers can use the
same conceptual and modelling tools on higher and lower levels of abstraction.

2.3 p-agents

The idea of using small-size agents to compose application functionality goes
back to the late 1990’s (e.g. [3], [8]) and is motivated by the suggestion to engi-
neer comprehensive applications with numerous entities having narrowly specia-
lised functionality in a cascading, hierarchical structure. The use of p-agents, in
the approach taken here, is similar to the one of object-oriented programming
in that u-agents can be recursively constructed from p-agents. This allows ef-
fective decomposition in fine-grained entities and also allows abstraction from

lower level functionality while constantly thinking in an agent metaphor. What
makes p-agents different from objects is that they pursue their own objectives
(e.g. composing their functionality from other agents) and they do not only act in
a reactive manner. Agents communicate asynchronously instead of blocking mes-
sage calls. Internally however, the application developer is not tied to a particu-
lar interaction mechanism. p-agents can thus largely differ in their internals but
commit to common communication mechanisms. As a result, applications deve-
loped with this u-agent concept in mind effectively exploit concurrency without
the need to deal with thread-related aspects (such as in many object-oriented
languages). At the same time, they deliver a performance which is comparable to
existing object-oriented systems. With this motivation in mind, we implemented
a p-agent platform we call p2.

The p-agent meta-model applied here is shown in Figure 1 and discussed in
the following paragraphs.

register/

GroupLeader
* S

1.%

{ent |

subscribe/
is group| plays raise

member|

Agent | |PassiveRole| | SocialRole |

Fig. 1. Core relationships in s

p-agents are lightweight autonomous persistent entities which show reactive
— and, potentially, proactive — behaviour and can efficiently interact in syn-
chronous or asynchronous manner. Organisational aspects come into play when
considering that p-agents are designed to play one or more user-defined roles
which are dedicated to fulfil applicable intents. Roles represent a set of potenti-
ally interrelated behaviours and may require necessary capabilities by a p-agent
in order to be played.

u-agent intents (as opposed to Android intents) represent the notion of in-
tentions, i.e. they are abstract request specifications. Roles registering applicable
intents need to provide mechanisms to satisfy those intents. u-agent intents can
be raised by any agent on the platform and are automatically bound to a sa-
tisfying agent (if any agent can fulfil those).

Apart from the interaction mechanisms, organisational modelling capabili-
ties are realized using the special 'Group Leader Role’. Group leaders control
an arbitrary number of sub-agents and serve the purpose to propagate control
messages from the agent platform, as well as to structure the agent society. This
allows flexible partitioning by functionality aspects. Agents playing the group
leader role typically use sub-agents to compose their own functionality. Sub-
agents playing this role can themselves have sub-agents which allows an agent
organisation of arbitrary depth. The advantages of this organisational modelling
mechanism not only include the strong degree of decomposition down to a very

fine-grained level, but the organisational modelling also allows the definition of
abstraction levels to hide details from the application developer.

Apart from the group leader role, other specializations to be mentioned are:
soctal roles which support asynchronous communication between agents; and
passive roles which only rely on synchronous communication. The purpose of
the latter role is to provide the most fine-grained functionality without the per-
formance penalty introduced by asynchronous message passing. The notion of
events is used to provide event subscription capabilities, which are of particular
concern when coordinating state in decentralised systems.

At this point we want to draw the reader’s attention to one aspect, which is
the similar role and denomination of intents. In both, Android and 2, intent in-
stances represent request specifications for particular tasks. However, the intent
structures of Android and p-agents are not compatible. The dynamic resolution
mechanism is similar, as in both cases they allow a loose coupling between ap-
plication components (in the shape of IntentFilters in Android and, respectively,
intent-based dynamic binding (via applicable intents) with p-agents).

Some of the core principles of u-agents such as loose coupling and asynchro-
nous communication are essential part of mobile application platforms such as
Android. p-agents offer a more unified yet consistent architecture and extend
those modelling mechanisms with an explicit task-oriented organisational per-
spective that is not part of Android’s concept.

2.4 Integrating pu-agents with Android

To make our vision of u-agents a reality, we have ported our p-agent framework
12 to the Android platform. A key to this operation is the open communication
principle of Android that enables the integration of p-agents in Android by
translating the differing intent data structures at runtime.

Android intents have a static class structure but can hold dynamically-typed
content. The structure of py-agent intents is not predefined and leaves the deve-
loper with a wide range of options; the p-agents intent structure also includes
the capability to integrate methods. The core of p-agents on Android (MOA)
— which is schematically visualized on Figure 2 — is thus the conversion of the
different intent types at runtime in order to allow direct interaction between
Android components and p-agents.

From an architectural perspective this integration is achieved by encapsu-
lating the p-agent organisation into an Android service which is addressable
by other legacy Android application components. The p-agents wrapped in the
Android service can directly address arbitrary Android application components,
pass data, and receive responses from addressable application components. Ap-
plication components themselves can address p-agents by using a predefined
intent type that allows the specification of an agent name. Intents sent from
Android not using this particular type are raised as events that u-agents may or
may not have subscribed to (and eventually react to).

To allow the direct access to Android functionality that is not addressable
via intents (such as the GPS functionality of the LocationManager, or the Sms-

Micro-agent

platform Android Legend
Sub-agent
77 Broadcast relationship
[AndioigEecuioniient | {_nientriter je— — — — —{(Rfher | [— — Android Intent
- | 1 1 AsennN 0 |\rzase Applicable intent
£ Messaging ntent Mintent 7 ¢
o » — — — % t (Micro-agent platform)
CapabilityMapper Android | MicroAgent [€— — xecuter)
Activity r-m=z7- - Registered Intent
Interface | Interface | IntentFilter !
Agent Service — — — — — — — — | |77 filter (Android)
’l . _] | Application components
N
i Service Broadcast
— Sms Loc_aglon Receiver
Utiity utiity |/ Android
g Activity

Fig. 2. p-agents on Android Architecture

Manager), this functionality is remodelled with dedicated p-agents and offered
to other agents in the u-agent organisation. Through flexible dynamic binding,
this model allows agents to use Android functionality in a consistent manner
without concern about where the actual functionality is executed. This gives
MOA - compared to the desktop version of the u-agent platform (u?) — an ex-
panded functionality set, as u-agents can thereby make use of the wide range
of sensors, sensory information and context (e.g. retrieve location information)
and communication channels (e.g. write SMS text messages).

3 DMobile application for Ad hoc meetings at
Unconferences

In order to show the potential of u-agents to complement mobile application
development, we describe a practical application that exploits some of the cha-
racteristics offered by p-agents.

3.1 Application context

Unconferences represent a new phenomenon that has emerged as a counterpart
to conventional conferences that require intensive and expensive quality assu-
rance mechanisms, organisation, committees, peer review, and publication of
presented papers. The idea of an unconference is based on the perception that
the collective knowledge of the audience is likely to be more extensive than that
of the scheduled speakers; apart from typically time-constrained question sessi-
ons this knowledge is hardly used at conventional conferences. In short, many
productive and inspiring talks actually seem to happen in hallways, by sponta-
neous interaction between a few conference participants instead of well-prepared
and time-constrained presenters.

Apart from the contrary philosophy of this grass-roots approach, Unconfe-
rences also heavily rely on the widely adopted social media of the Web 2.0, such
as blogs and social networking sites. Depending on the particular nature of the
unconference, topics of concern can be suggested and rated via Wiki-based web-
sites before the event, or are negotiated on the spot, at the venue. During the

actual unconference, constant multi-channel interactions take place; apart from
the presentations — which can eventually transform to discussions — participants
constantly share ideas and inspiration via social media'. Input can also come
from people without physical presence — for example Twitter, Facebook or the
like. As a general rule, every person going to an unconference should expect to
at least give his opinion on a topic of concern, or communicate his or her own
idea.

Talks can spin off into smaller groups of people discussing either niche topics
or specialist aspects. Those groups typically vary in size, as well as in composition
with regards to personal attributes (such as rhetorical abilities and confidence)
and skills (e.g. skills to use social media). Persons providing bright and innovative
ideas may not necessarily have the soft skills of comparable quality. This makes
the presence of a person with moderation skills beneficial, in order to convene
a session and encourage participation of less dominant attendees, rather than
leaving this entirely to the uncertain and unguided dynamics of the group.

Although general purpose social media can sometimes be effective to support
the organisation of those dynamic sub-events, we think that dedicated software
can outperform and improve the basis for productive and balanced interactions
while capitalising on experiences from previous meetings. Another seemingly
simpler but important logistic aspect is the coordination of concurrent meetings
with differing numbers of participants and a limited number of rooms at a venue.
Depending on the number of participants and the available time slots, the system
can effectively coordinate spontaneous scheduling of rooms.

We use this scenario to show the potential of the agent-based modelling
approach for mobile applications.

3.2 Mobile application for ad hoc organisation of spontaneous talks

The use of u-agents as a modelling paradigm on mobile devices supports a fairly
broad spectrum of modelling needs. Agents represent the interacting entities,
intents are used to express particular requests, and events are used to inform
an unspecified number of recipients. Apart from the support in shaping group
structure, group size is also of concern. To facilitate this, the application demands
more static information about the location of the venue in order to function
productively.

The overall application is thus divided into an agent platform holding an
agent that deals with room assignments and the management of topics, while an
arbitrary number of further platforms — running the Android-based client part
of the application — can actively use the system.

The following Figure 3 visualizes the static structure of this application.
The notation used shows the organisational decomposition of applications into
agents and emphasizes their hierarchical relationships. Agents are annotated
with intents they are able to process (i.e. fulfill) and events they want to subscribe
to.

1 An exemplified overview on collaborative tools involved in Unconferences is provided
by Crossett et al. [2]

Android ‘Ad hoc UnConference Talk Locator Client(s)’ Micro-agent platform (Server side)

[
I [SystemOwner j

Commit
to topic UnConference
* T TalkLocatorServer
- v |/
MicroAgent Interface Service b
|—Top|
(Android Interface Role) - Room
Allocator

UnConference
TalkParticipant)

TopicRating TopicPartici i
Agent pantAgent B

1 RateTopic | SubscribeToTopic |
; SuggestTopicMerge | CommitToTopic |

User
Interactor

Reputation
Handler

1 RateConvener |

Qualities

Micro-agent platform

Legend

FoSm=—=—— 1 Applicable intent Application components
— —» Android Intent | '--====-- ! (micro-agent platform) Micr
r Eve rﬂij Subscribed event

Sub-agent | '-—=-—- (micro-agent platform) - ‘Android
relationship FinteniFiier Registered Intent filter A"d’f"d Activity
[; (Android) Service

Fig. 3. Static Structure of application

For the description of the agent internals, we use message-centric Coloured
Petri Nets (CPN) [7]. CPNs are a good way to capture the dynamic aspects
within the different agents — and thus implicitly the dynamic structure of the
entire application. With 'message-centric’ we refer to the fact that u-agents ge-
nerally react on incoming messages (be it intents or events delivered in messages
— or even custom messages without intents or events), which modify their state
(visualized by places representing state repositories), and eventually produce
outgoing messages. On this level, internals of u-agents are thus fully represented
in terms of message flow.

Instead of describing all application details in the form of diagrams, we pro-
vide below an overview of the overall application in a narrative manner. For a
selected p-agent we describe the internal message flow to show the intent-based
loose coupling as well as to emphasize the decentralized character of application
composition using p-agents.

The application allows clients connected to the server part of the application
to see, rate, and suggest new topics (by invoking the SuggestTopic intent resol-
ving to the TopicHandlerAgent on the server side). New topics are immediately
available to all clients and potential participants can suggest their merging (if to-
pics seem related) — using the Suggest TopicMerge intent — and, most importantly,
subscribe to topics of interest (using the SubscribeToTopic intent). Subscribing
to topics does not automatically imply participation, but it ensures that the
subscriber is notified about all modifications (e.g. via the TopicMergedEvent
registered to the ClientTopicHandler) and contacted once another subscriber

requests commitment to the topic. All subscribers then need to accept or decline
this request, and in consequence a suitable room (according to the number of
committing participants) and time is scheduled, with preference for topics of
high rating.

This base set of functionality gives rise to strong dynamics that can unfold,
given a high number of users and a wide range of different interests.

Participants can not only rate topics but also rate other attendees with re-
gards to their mediation qualities, which is of help to suggest potential modera-
tors for particular talks. The merging of topics can be suggested by any client
connected the server, but demands for confirmation by the ones who originally
suggested the affected topics.

To give some insight on the internals of p-agents, we take a representative
diagram for a server side agent entity.?

Topic Rating Agent

Incoming
message Message contains

(X
. . - add topic to Topic
ssage contains oo eposito
RateTepicintent vy

Two messages with
response to

SuggestTopic

Mergelntent

Message coqtains
SuggestTopts - adjust rating for
Mergelntent according topic

- prepare messages Outgoing
to suggester(s) of message
Both original original topics

- merge topics
- merge ratings of topics
At least one™sggil - prepare sending of
suggester disagres TopicMergedEvent

Response
received

- prepare message to
inform merge suggester
of rejection

Fig. 4. TopicRatingAgent on the server side

The TopicRatingAgent, whose operation is depicted by the CPN in Figure 4,
resides on the server side of the application, and handles the aspects of adding
a topic, rating it, and merging topics. Upon receiving a message, the agent
checks it for contained intents or events. It reacts to messages containing a
TopicAddedEvent; the topic is saved to the local topic repository (indicated as
a Petri-net place in the diagram). Messages containing a Rate TopicIntent carry
information about a rating done by a client, and results in an update of the
topic rating on the server side. Upon receipt of a SuggestTopicMergelntent, the

2 In contrast to the static structure shown in Figure 3, where intents and events can
be disambiguated by the graphical notation, intents and event names shown in the
CPN diagram in Figure 4 are written in bold italics and additionally carry the type
name as suffix to facilitate the interpretation.

request is forwarded to the original suggesters of the topics concerned. Upon
their response — and the case that both original suggesters approve the merging
— the topics are merged and an according event is sent out in order to notify all
subscribers (which includes the clients but also two other u-agents on the server
side as seen from the static application diagram in Figure 3). If they disagree,
the client who suggested the merge is notified about the rejection of his request.

Note that Figure 4 shows the message-centrism of p-agents which enables a
streamlined modelling of core functionality with a low threshold between design
and implementation. The only aspects not captured by the diagrams are the in-
tent internals. In fact, the internals of intents are only known to the u-agents that
either raise or process those. This principle hides unnecessary information from
non-affected agents and thus avoids the unintented or accidental interpretation
by unrelated agents. As briefly mentioned in section 2.3, the dynamic binding
(matching of raised intents against registered applicable intents) between dif-
ferent agents is realized by the underlying agent platform in an asynchronous
manner and is transparent to the application level. Still, if of interest, agents can
formulate custom messages addressed by agent name or using various addressing
patterns (e.g. broadcast or rolecast).

Although only briefly shown through the above example, the MOA-based
interaction mechanism allows a strong embedding of p-agents with contextual
information from sensor information (e.g. GPS, accelerometer, gyroscope) and
use of communication channels (e.g. WiFi, Bluetooth, SMS). This opens the
MOA approach for a wide range of smart context-embedded applications and
eases extension of those. An example would be the suggestion of topics via SMS
or the suggestion of informal meeting points for a smaller number of participants
based on the proximity of all attendees. On the server side the obvious potential
is to allow remote users to suggest topics (e.g. via the Web) and keep those
informed about the current schedule of events.

4 Related work

Looking at related work in the field of Unconferences is rather difficult, as both
the process of organisation (i.e. often decentralized organisation, at most a cen-
tral wiki) as well as the output (i.e. no formal proceedings) is informal. To
the authors’ knowledge, the only comprehensive description of a collaborative
toolset for the operation of Unconferences is provided by Crossett et al. [2]3.
From the available literature, tools used to organise such venues are only weakly
integrated (e.g. wikis, blogs, twitter) and rather heterogeneous in their nature.
Given this context, a more unified but still decentralized and extensible p-agent-
based infrastructure seems helpful to foster a more efficient ad hoc organisation
of events and management of limited resources (e.g. rooms and time) during
Unconferences.

Taking a look at Android-based agent platforms, a number of those are deri-
ved from desktop platforms. An Android derivate of the prominent multi-agent

3 A further resource of information is the Unconference blog of Kaliya Hamlin [6].

platform JADE, JADE-Android [5], is one of the most prominent examples, and
essentially is a subset of the desktop version of JADE. It allows the execution
of one agent. For the distributed operation it relies on at least one connected
desktop version of the platform.

Another, quite elaborated, approach is JaCa-Android [9] which identifies
agents as first order entities and interprets all handled objects (e.g. GPS coor-
dinate) as so-called artifacts. The internal architecture of the platform relies on
an implementation of the belief-desire-intention (BDI) model.

Agiiero et al. [1] are among the earliest adopters of agent-based software
development for Android. They implemented an abstract agent platform model
(Agent Platform Independent Model (APIM)) on Android, which largely focuses
on agent internals; organisational modelling aspects are not covered. The imple-
mentation extends the Android application components directly, thus building
an agent platform ’on top of Android’, in contrast to the interfacing approach
taken by MOA (see section 2.4).

None of the above mentioned approaches encourages the use on many light-
weight p-agents, but instead, requires rather a limited number of more intelligent
agents. This is a useful approach to offer smart applications, but hinders strong
degrees of decomposition and flexible reconfiguration in cases involving newly
introduced agents and changing agent capabilities at runtime.

5 Conclusion

The use of u-agents, as a general application modelling tool, provides a strong
degree of decentralization, effective (hierarchical) decomposition and transparent
interoperability between application components (i.e. external dependencies of
agents are captured using message-centric diagrams as shown in section 3.2).

The possibility of employing more primitive (bare-boned) p-agents facilita-
tes the decomposition to a fine-grained level. u-agents can be used where the
instantiation of yet another Android application component would be ineffi-
cient. MOA-based applications are open to extension and allow developers to
capitalise on implementation efforts by reusing existing intents exploiting the
dynamic binding mechanism. In principle, this mechanism is available across va-
rious applications and thus allows a better contextualization not only of isolated
applications (by integrated sensors and communication channels) but over the
entire application landscape. Applications can not only rely on other applications
(such as those offered with Android’s own development approach), but also on
elements of other applications (i.e. pu-agents of MOA applications, or individual
application components of traditional Android applications).

Using the example of Unconferences — an inherently dynamic and decentra-
lized phenomenon in itself — py-agents seem suitable to cope with the fluid and
heterogeneous nature of those events, and offer useful mechanisms of coordina-
tion while maintaining the necessary flexibility. Relating it to the given appli-
cation scenario, p-agents allow the handling of unexpected events, such as the
unexpected occupation of a scheduled location, or the 'no show’ of participants.

Also, bearing in mind the wide set of different tools used to run Unconferences,
the agent principles are adequate to handle the coordination of many heteroge-
neous information sources. As such the application described in this context is
only a starting point but provides enough understanding about the mechanics
of p-agents to inspire further, more context-dependent functionality.

We hope that the u-agent modelling principles find adoption as an extension
to the wide-spread use of object-oriented modelling, and we think that the lig-
htweight framework presented in this article provides a low threshold to achieve
this. The development around Android has shown how open software and open
communication principles foster a diverse application ecosystem. p-agents can
extend those principles, not only to ease communication between devices and ap-
plications, but promote the ad hoc organisation of more elementary application
elements, treating the mobile device as their natural open environment.

References

1. J. Agiliero, M. Rebollo, C. Carrascosa, and V. Julidn. Does Android Dream with
Intelligent Agents? In J. Corchado, S. Rodriguez, J. Llinas, and J. Molina, editors,
International Symposium on Distributed Computing and Artificial Intelligence 2008
(DCAI 2008), volume 50 of Advances in Soft Computing, pages 194—-204. Springer
Berlin / Heidelberg, 2009.

2. L. Crossett, J. Kraus, and S. Lawson. Collaborative tools used to organize a library
camp unconference. http://eprints.rclis.org/bitstream/10760/12831/1/Preprint-
CollaborativeToolsUsedtoOrganizeal.ibraryCampUnconference.pdf, March 2009.
Accessed on: 24th August 2011.

3. J. Ferber and O. Gutknecht. A meta-model for the analysis and design of orga-
nizations in multi-agent systems. Third International Conference on Multi-Agent
Systems (ICMAS 98), IEEE Computer Society, pages 128-135, 1998.

4. Google. What is Android? http://developer.android.com/guide/basics/what-is-
android.html. Accessed on: 24th August 2011.

5. D. Gotta, T. Trucco, M. Ughetti, S. Semeria, C. Cuce, and A. M. Por-
cino. JADE Android Add-on Guide. http://jade.tilab.com/doc/tutorials/JADE
_ANDROID_Guide.pdf. Accessed on: 24th August 2011.

6. K. Hamlin. Unconference blog. http://www.unconference.net. Accessed on: 24th
August 2011.

7. K. Jensen. Coloured Petri-Nets — Basic concepts, Analysis Models and Practical
Use, volume 1. Springer-Verlag, 1992.

8. M. Nowostawski, M. Purvis, and S. Cranefield. KEA - Multi-Level Agent Architec-
ture. In Proceedings of the Second International Workshop of Central and Eastern
Europe on Multi-Agent Systems (CEEMAS 2001), pages 355—-362. Department of
Computer Science, University of Mining and Metallurgy, Krakow, Poland, 2001.

9. A. Santi, G. Marco, and A. Ricci. JaCa-Android: An Agent-based Platform for
Building Smart Mobile Applications. In In Proceedings of LAnguages, methodolo-
gies and Development tools for multi-agent systemS (LADS-2010), 2010.

10. Wikipedia. Unconference. http://en.wikipedia.org/wiki/Unconference. Accessed
on: 24th August 2011.

11. M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2):115-152, 1995.

